Loading…
Batched Second-Order Adjoint Sensitivity for Reduced Space Methods
This paper presents an efficient method for extracting the second-order sensitivities from a system of implicit nonlinear equations on upcoming graphical processing units (GPU) dominated computer systems. We design a custom automatic differentiation (AutoDiff) backend that targets highly parallel ar...
Saved in:
Published in: | arXiv.org 2022-01 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents an efficient method for extracting the second-order sensitivities from a system of implicit nonlinear equations on upcoming graphical processing units (GPU) dominated computer systems. We design a custom automatic differentiation (AutoDiff) backend that targets highly parallel architectures by extracting the second-order information in batch. When the nonlinear equations are associated to a reduced space optimization problem, we leverage the parallel reverse-mode accumulation in a batched adjoint-adjoint algorithm to compute efficiently the reduced Hessian of the problem. We apply the method to extract the reduced Hessian associated to the balance equations of a power network, and show on the largest instances that a parallel GPU implementation is 30 times faster than a sequential CPU reference based on UMFPACK. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2201.00241 |