Loading…

Computational Intelligence-Based Methodology for Antenna Development

The antenna design is a challenging task, which might be time-consuming using conventional computational methods that typically require high computational capability, due to the need for several sweeps and re-running processes. This work proposes an efficient and accurate computational intelligence-...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.1860-1870
Main Authors: Melo, Marcello Caldano De, Santos, Pedro Buarque, Faustino, Everaldo, Bastos-Filho, Carmelo J. A., Cerqueira Sodre, Arismar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-4406c19dad64fc0abd56ac2fab61e54affc9d72da024fdd32d356041f8541e6f3
cites cdi_FETCH-LOGICAL-c408t-4406c19dad64fc0abd56ac2fab61e54affc9d72da024fdd32d356041f8541e6f3
container_end_page 1870
container_issue
container_start_page 1860
container_title IEEE access
container_volume 10
creator Melo, Marcello Caldano De
Santos, Pedro Buarque
Faustino, Everaldo
Bastos-Filho, Carmelo J. A.
Cerqueira Sodre, Arismar
description The antenna design is a challenging task, which might be time-consuming using conventional computational methods that typically require high computational capability, due to the need for several sweeps and re-running processes. This work proposes an efficient and accurate computational intelligence-based methodology for the antenna design and optimization. The computational technical solution consists of a surrogate model application, composed of a Multilayer Perceptron (MLP) artificial neural network with backpropagation for the regression process. Combined with the surrogate model, two multiobjective optimization meta-heuristic strategies, Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D), are used to overcome the mentioned issues from the traditional antenna design method. A study of case considering a dipole antenna for the 3.5 GHz 5G band is reported, as proof of the proposed methodology concept. Comparisons of antenna impedance matching obtained by the proposed methodology, numerical full-wave results from ANSYS HFSS and experimental result from the antenna prototype are performed for demonstrating its applicability and effectiveness for antenna development.
doi_str_mv 10.1109/ACCESS.2021.3137198
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2617499318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9656850</ieee_id><doaj_id>oai_doaj_org_article_8a470a681e964096921fb1809a67e120</doaj_id><sourcerecordid>2617499318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-4406c19dad64fc0abd56ac2fab61e54affc9d72da024fdd32d356041f8541e6f3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhCMEEhXwBL1E4pzitR3HPpbwV6mIA3C2tvG6pErj4qRIvD0pqRB72dVoZlb6kmQKbAbAzM28LO9fX2eccZgJEAUYfZJMOCiTiVyo03_3eXLVdRs2jB6kvJgkd2XY7vY99nVosUkXbU9NU6-prSi7xY5c-kz9R3ChCevv1IeYzgdL22J6R1_UhN2W2v4yOfPYdHR13BfJ-8P9W_mULV8eF-V8mVWS6T6TkqkKjEOnpK8YrlyusOIeVwool-h9ZVzBHTIuvXOCO5ErJsHrXAIpLy6SxdjrAm7sLtZbjN82YG1_hRDXFmNfVw1ZjbJgqDSQUZIZZTj4FWhmUBUEnA1d12PXLobPPXW93YR9HBh0lisopDEC9OASo6uKoesi-b-vwOyBvh3p2wN9e6Q_pKZjqiaiv4RRudI5Ez83t3_p</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617499318</pqid></control><display><type>article</type><title>Computational Intelligence-Based Methodology for Antenna Development</title><source>IEEE Open Access Journals</source><creator>Melo, Marcello Caldano De ; Santos, Pedro Buarque ; Faustino, Everaldo ; Bastos-Filho, Carmelo J. A. ; Cerqueira Sodre, Arismar</creator><creatorcontrib>Melo, Marcello Caldano De ; Santos, Pedro Buarque ; Faustino, Everaldo ; Bastos-Filho, Carmelo J. A. ; Cerqueira Sodre, Arismar</creatorcontrib><description>The antenna design is a challenging task, which might be time-consuming using conventional computational methods that typically require high computational capability, due to the need for several sweeps and re-running processes. This work proposes an efficient and accurate computational intelligence-based methodology for the antenna design and optimization. The computational technical solution consists of a surrogate model application, composed of a Multilayer Perceptron (MLP) artificial neural network with backpropagation for the regression process. Combined with the surrogate model, two multiobjective optimization meta-heuristic strategies, Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D), are used to overcome the mentioned issues from the traditional antenna design method. A study of case considering a dipole antenna for the 3.5 GHz 5G band is reported, as proof of the proposed methodology concept. Comparisons of antenna impedance matching obtained by the proposed methodology, numerical full-wave results from ANSYS HFSS and experimental result from the antenna prototype are performed for demonstrating its applicability and effectiveness for antenna development.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3137198</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Antenna design ; Antennas ; Antennas design ; Artificial intelligence ; Artificial neural networks ; Back propagation ; Back propagation networks ; computational intelligence ; Computational modeling ; Design optimization ; Dipole antennas ; Evolutionary algorithms ; Genetic algorithms ; Heuristic methods ; Impedance matching ; machine learning ; Mathematical models ; Methodology ; multi-objective optimization ; Multilayer perceptrons ; Multiple objective analysis ; Optimization ; Reflector antennas ; Sorting algorithms ; Training</subject><ispartof>IEEE access, 2022, Vol.10, p.1860-1870</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-4406c19dad64fc0abd56ac2fab61e54affc9d72da024fdd32d356041f8541e6f3</citedby><cites>FETCH-LOGICAL-c408t-4406c19dad64fc0abd56ac2fab61e54affc9d72da024fdd32d356041f8541e6f3</cites><orcidid>0000-0003-0894-9619 ; 0000-0002-5659-4165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9656850$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Melo, Marcello Caldano De</creatorcontrib><creatorcontrib>Santos, Pedro Buarque</creatorcontrib><creatorcontrib>Faustino, Everaldo</creatorcontrib><creatorcontrib>Bastos-Filho, Carmelo J. A.</creatorcontrib><creatorcontrib>Cerqueira Sodre, Arismar</creatorcontrib><title>Computational Intelligence-Based Methodology for Antenna Development</title><title>IEEE access</title><addtitle>Access</addtitle><description>The antenna design is a challenging task, which might be time-consuming using conventional computational methods that typically require high computational capability, due to the need for several sweeps and re-running processes. This work proposes an efficient and accurate computational intelligence-based methodology for the antenna design and optimization. The computational technical solution consists of a surrogate model application, composed of a Multilayer Perceptron (MLP) artificial neural network with backpropagation for the regression process. Combined with the surrogate model, two multiobjective optimization meta-heuristic strategies, Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D), are used to overcome the mentioned issues from the traditional antenna design method. A study of case considering a dipole antenna for the 3.5 GHz 5G band is reported, as proof of the proposed methodology concept. Comparisons of antenna impedance matching obtained by the proposed methodology, numerical full-wave results from ANSYS HFSS and experimental result from the antenna prototype are performed for demonstrating its applicability and effectiveness for antenna development.</description><subject>Antenna design</subject><subject>Antennas</subject><subject>Antennas design</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>computational intelligence</subject><subject>Computational modeling</subject><subject>Design optimization</subject><subject>Dipole antennas</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Impedance matching</subject><subject>machine learning</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>multi-objective optimization</subject><subject>Multilayer perceptrons</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Reflector antennas</subject><subject>Sorting algorithms</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkM1OwzAQhCMEEhXwBL1E4pzitR3HPpbwV6mIA3C2tvG6pErj4qRIvD0pqRB72dVoZlb6kmQKbAbAzM28LO9fX2eccZgJEAUYfZJMOCiTiVyo03_3eXLVdRs2jB6kvJgkd2XY7vY99nVosUkXbU9NU6-prSi7xY5c-kz9R3ChCevv1IeYzgdL22J6R1_UhN2W2v4yOfPYdHR13BfJ-8P9W_mULV8eF-V8mVWS6T6TkqkKjEOnpK8YrlyusOIeVwool-h9ZVzBHTIuvXOCO5ErJsHrXAIpLy6SxdjrAm7sLtZbjN82YG1_hRDXFmNfVw1ZjbJgqDSQUZIZZTj4FWhmUBUEnA1d12PXLobPPXW93YR9HBh0lisopDEC9OASo6uKoesi-b-vwOyBvh3p2wN9e6Q_pKZjqiaiv4RRudI5Ez83t3_p</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Melo, Marcello Caldano De</creator><creator>Santos, Pedro Buarque</creator><creator>Faustino, Everaldo</creator><creator>Bastos-Filho, Carmelo J. A.</creator><creator>Cerqueira Sodre, Arismar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0894-9619</orcidid><orcidid>https://orcid.org/0000-0002-5659-4165</orcidid></search><sort><creationdate>2022</creationdate><title>Computational Intelligence-Based Methodology for Antenna Development</title><author>Melo, Marcello Caldano De ; Santos, Pedro Buarque ; Faustino, Everaldo ; Bastos-Filho, Carmelo J. A. ; Cerqueira Sodre, Arismar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-4406c19dad64fc0abd56ac2fab61e54affc9d72da024fdd32d356041f8541e6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antenna design</topic><topic>Antennas</topic><topic>Antennas design</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>computational intelligence</topic><topic>Computational modeling</topic><topic>Design optimization</topic><topic>Dipole antennas</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Impedance matching</topic><topic>machine learning</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>multi-objective optimization</topic><topic>Multilayer perceptrons</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Reflector antennas</topic><topic>Sorting algorithms</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melo, Marcello Caldano De</creatorcontrib><creatorcontrib>Santos, Pedro Buarque</creatorcontrib><creatorcontrib>Faustino, Everaldo</creatorcontrib><creatorcontrib>Bastos-Filho, Carmelo J. A.</creatorcontrib><creatorcontrib>Cerqueira Sodre, Arismar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melo, Marcello Caldano De</au><au>Santos, Pedro Buarque</au><au>Faustino, Everaldo</au><au>Bastos-Filho, Carmelo J. A.</au><au>Cerqueira Sodre, Arismar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Intelligence-Based Methodology for Antenna Development</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1860</spage><epage>1870</epage><pages>1860-1870</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The antenna design is a challenging task, which might be time-consuming using conventional computational methods that typically require high computational capability, due to the need for several sweeps and re-running processes. This work proposes an efficient and accurate computational intelligence-based methodology for the antenna design and optimization. The computational technical solution consists of a surrogate model application, composed of a Multilayer Perceptron (MLP) artificial neural network with backpropagation for the regression process. Combined with the surrogate model, two multiobjective optimization meta-heuristic strategies, Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D), are used to overcome the mentioned issues from the traditional antenna design method. A study of case considering a dipole antenna for the 3.5 GHz 5G band is reported, as proof of the proposed methodology concept. Comparisons of antenna impedance matching obtained by the proposed methodology, numerical full-wave results from ANSYS HFSS and experimental result from the antenna prototype are performed for demonstrating its applicability and effectiveness for antenna development.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3137198</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0894-9619</orcidid><orcidid>https://orcid.org/0000-0002-5659-4165</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.1860-1870
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2617499318
source IEEE Open Access Journals
subjects Antenna design
Antennas
Antennas design
Artificial intelligence
Artificial neural networks
Back propagation
Back propagation networks
computational intelligence
Computational modeling
Design optimization
Dipole antennas
Evolutionary algorithms
Genetic algorithms
Heuristic methods
Impedance matching
machine learning
Mathematical models
Methodology
multi-objective optimization
Multilayer perceptrons
Multiple objective analysis
Optimization
Reflector antennas
Sorting algorithms
Training
title Computational Intelligence-Based Methodology for Antenna Development
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Intelligence-Based%20Methodology%20for%20Antenna%20Development&rft.jtitle=IEEE%20access&rft.au=Melo,%20Marcello%20Caldano%20De&rft.date=2022&rft.volume=10&rft.spage=1860&rft.epage=1870&rft.pages=1860-1870&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3137198&rft_dat=%3Cproquest_ieee_%3E2617499318%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-4406c19dad64fc0abd56ac2fab61e54affc9d72da024fdd32d356041f8541e6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2617499318&rft_id=info:pmid/&rft_ieee_id=9656850&rfr_iscdi=true