Loading…
Computational Intelligence-Based Methodology for Antenna Development
The antenna design is a challenging task, which might be time-consuming using conventional computational methods that typically require high computational capability, due to the need for several sweeps and re-running processes. This work proposes an efficient and accurate computational intelligence-...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.1860-1870 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-4406c19dad64fc0abd56ac2fab61e54affc9d72da024fdd32d356041f8541e6f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-4406c19dad64fc0abd56ac2fab61e54affc9d72da024fdd32d356041f8541e6f3 |
container_end_page | 1870 |
container_issue | |
container_start_page | 1860 |
container_title | IEEE access |
container_volume | 10 |
creator | Melo, Marcello Caldano De Santos, Pedro Buarque Faustino, Everaldo Bastos-Filho, Carmelo J. A. Cerqueira Sodre, Arismar |
description | The antenna design is a challenging task, which might be time-consuming using conventional computational methods that typically require high computational capability, due to the need for several sweeps and re-running processes. This work proposes an efficient and accurate computational intelligence-based methodology for the antenna design and optimization. The computational technical solution consists of a surrogate model application, composed of a Multilayer Perceptron (MLP) artificial neural network with backpropagation for the regression process. Combined with the surrogate model, two multiobjective optimization meta-heuristic strategies, Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D), are used to overcome the mentioned issues from the traditional antenna design method. A study of case considering a dipole antenna for the 3.5 GHz 5G band is reported, as proof of the proposed methodology concept. Comparisons of antenna impedance matching obtained by the proposed methodology, numerical full-wave results from ANSYS HFSS and experimental result from the antenna prototype are performed for demonstrating its applicability and effectiveness for antenna development. |
doi_str_mv | 10.1109/ACCESS.2021.3137198 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2617499318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9656850</ieee_id><doaj_id>oai_doaj_org_article_8a470a681e964096921fb1809a67e120</doaj_id><sourcerecordid>2617499318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-4406c19dad64fc0abd56ac2fab61e54affc9d72da024fdd32d356041f8541e6f3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhCMEEhXwBL1E4pzitR3HPpbwV6mIA3C2tvG6pErj4qRIvD0pqRB72dVoZlb6kmQKbAbAzM28LO9fX2eccZgJEAUYfZJMOCiTiVyo03_3eXLVdRs2jB6kvJgkd2XY7vY99nVosUkXbU9NU6-prSi7xY5c-kz9R3ChCevv1IeYzgdL22J6R1_UhN2W2v4yOfPYdHR13BfJ-8P9W_mULV8eF-V8mVWS6T6TkqkKjEOnpK8YrlyusOIeVwool-h9ZVzBHTIuvXOCO5ErJsHrXAIpLy6SxdjrAm7sLtZbjN82YG1_hRDXFmNfVw1ZjbJgqDSQUZIZZTj4FWhmUBUEnA1d12PXLobPPXW93YR9HBh0lisopDEC9OASo6uKoesi-b-vwOyBvh3p2wN9e6Q_pKZjqiaiv4RRudI5Ez83t3_p</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617499318</pqid></control><display><type>article</type><title>Computational Intelligence-Based Methodology for Antenna Development</title><source>IEEE Open Access Journals</source><creator>Melo, Marcello Caldano De ; Santos, Pedro Buarque ; Faustino, Everaldo ; Bastos-Filho, Carmelo J. A. ; Cerqueira Sodre, Arismar</creator><creatorcontrib>Melo, Marcello Caldano De ; Santos, Pedro Buarque ; Faustino, Everaldo ; Bastos-Filho, Carmelo J. A. ; Cerqueira Sodre, Arismar</creatorcontrib><description>The antenna design is a challenging task, which might be time-consuming using conventional computational methods that typically require high computational capability, due to the need for several sweeps and re-running processes. This work proposes an efficient and accurate computational intelligence-based methodology for the antenna design and optimization. The computational technical solution consists of a surrogate model application, composed of a Multilayer Perceptron (MLP) artificial neural network with backpropagation for the regression process. Combined with the surrogate model, two multiobjective optimization meta-heuristic strategies, Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D), are used to overcome the mentioned issues from the traditional antenna design method. A study of case considering a dipole antenna for the 3.5 GHz 5G band is reported, as proof of the proposed methodology concept. Comparisons of antenna impedance matching obtained by the proposed methodology, numerical full-wave results from ANSYS HFSS and experimental result from the antenna prototype are performed for demonstrating its applicability and effectiveness for antenna development.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3137198</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Antenna design ; Antennas ; Antennas design ; Artificial intelligence ; Artificial neural networks ; Back propagation ; Back propagation networks ; computational intelligence ; Computational modeling ; Design optimization ; Dipole antennas ; Evolutionary algorithms ; Genetic algorithms ; Heuristic methods ; Impedance matching ; machine learning ; Mathematical models ; Methodology ; multi-objective optimization ; Multilayer perceptrons ; Multiple objective analysis ; Optimization ; Reflector antennas ; Sorting algorithms ; Training</subject><ispartof>IEEE access, 2022, Vol.10, p.1860-1870</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-4406c19dad64fc0abd56ac2fab61e54affc9d72da024fdd32d356041f8541e6f3</citedby><cites>FETCH-LOGICAL-c408t-4406c19dad64fc0abd56ac2fab61e54affc9d72da024fdd32d356041f8541e6f3</cites><orcidid>0000-0003-0894-9619 ; 0000-0002-5659-4165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9656850$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Melo, Marcello Caldano De</creatorcontrib><creatorcontrib>Santos, Pedro Buarque</creatorcontrib><creatorcontrib>Faustino, Everaldo</creatorcontrib><creatorcontrib>Bastos-Filho, Carmelo J. A.</creatorcontrib><creatorcontrib>Cerqueira Sodre, Arismar</creatorcontrib><title>Computational Intelligence-Based Methodology for Antenna Development</title><title>IEEE access</title><addtitle>Access</addtitle><description>The antenna design is a challenging task, which might be time-consuming using conventional computational methods that typically require high computational capability, due to the need for several sweeps and re-running processes. This work proposes an efficient and accurate computational intelligence-based methodology for the antenna design and optimization. The computational technical solution consists of a surrogate model application, composed of a Multilayer Perceptron (MLP) artificial neural network with backpropagation for the regression process. Combined with the surrogate model, two multiobjective optimization meta-heuristic strategies, Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D), are used to overcome the mentioned issues from the traditional antenna design method. A study of case considering a dipole antenna for the 3.5 GHz 5G band is reported, as proof of the proposed methodology concept. Comparisons of antenna impedance matching obtained by the proposed methodology, numerical full-wave results from ANSYS HFSS and experimental result from the antenna prototype are performed for demonstrating its applicability and effectiveness for antenna development.</description><subject>Antenna design</subject><subject>Antennas</subject><subject>Antennas design</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>computational intelligence</subject><subject>Computational modeling</subject><subject>Design optimization</subject><subject>Dipole antennas</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Impedance matching</subject><subject>machine learning</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>multi-objective optimization</subject><subject>Multilayer perceptrons</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Reflector antennas</subject><subject>Sorting algorithms</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkM1OwzAQhCMEEhXwBL1E4pzitR3HPpbwV6mIA3C2tvG6pErj4qRIvD0pqRB72dVoZlb6kmQKbAbAzM28LO9fX2eccZgJEAUYfZJMOCiTiVyo03_3eXLVdRs2jB6kvJgkd2XY7vY99nVosUkXbU9NU6-prSi7xY5c-kz9R3ChCevv1IeYzgdL22J6R1_UhN2W2v4yOfPYdHR13BfJ-8P9W_mULV8eF-V8mVWS6T6TkqkKjEOnpK8YrlyusOIeVwool-h9ZVzBHTIuvXOCO5ErJsHrXAIpLy6SxdjrAm7sLtZbjN82YG1_hRDXFmNfVw1ZjbJgqDSQUZIZZTj4FWhmUBUEnA1d12PXLobPPXW93YR9HBh0lisopDEC9OASo6uKoesi-b-vwOyBvh3p2wN9e6Q_pKZjqiaiv4RRudI5Ez83t3_p</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Melo, Marcello Caldano De</creator><creator>Santos, Pedro Buarque</creator><creator>Faustino, Everaldo</creator><creator>Bastos-Filho, Carmelo J. A.</creator><creator>Cerqueira Sodre, Arismar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0894-9619</orcidid><orcidid>https://orcid.org/0000-0002-5659-4165</orcidid></search><sort><creationdate>2022</creationdate><title>Computational Intelligence-Based Methodology for Antenna Development</title><author>Melo, Marcello Caldano De ; Santos, Pedro Buarque ; Faustino, Everaldo ; Bastos-Filho, Carmelo J. A. ; Cerqueira Sodre, Arismar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-4406c19dad64fc0abd56ac2fab61e54affc9d72da024fdd32d356041f8541e6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antenna design</topic><topic>Antennas</topic><topic>Antennas design</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>computational intelligence</topic><topic>Computational modeling</topic><topic>Design optimization</topic><topic>Dipole antennas</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Impedance matching</topic><topic>machine learning</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>multi-objective optimization</topic><topic>Multilayer perceptrons</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Reflector antennas</topic><topic>Sorting algorithms</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melo, Marcello Caldano De</creatorcontrib><creatorcontrib>Santos, Pedro Buarque</creatorcontrib><creatorcontrib>Faustino, Everaldo</creatorcontrib><creatorcontrib>Bastos-Filho, Carmelo J. A.</creatorcontrib><creatorcontrib>Cerqueira Sodre, Arismar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melo, Marcello Caldano De</au><au>Santos, Pedro Buarque</au><au>Faustino, Everaldo</au><au>Bastos-Filho, Carmelo J. A.</au><au>Cerqueira Sodre, Arismar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Intelligence-Based Methodology for Antenna Development</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1860</spage><epage>1870</epage><pages>1860-1870</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The antenna design is a challenging task, which might be time-consuming using conventional computational methods that typically require high computational capability, due to the need for several sweeps and re-running processes. This work proposes an efficient and accurate computational intelligence-based methodology for the antenna design and optimization. The computational technical solution consists of a surrogate model application, composed of a Multilayer Perceptron (MLP) artificial neural network with backpropagation for the regression process. Combined with the surrogate model, two multiobjective optimization meta-heuristic strategies, Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D), are used to overcome the mentioned issues from the traditional antenna design method. A study of case considering a dipole antenna for the 3.5 GHz 5G band is reported, as proof of the proposed methodology concept. Comparisons of antenna impedance matching obtained by the proposed methodology, numerical full-wave results from ANSYS HFSS and experimental result from the antenna prototype are performed for demonstrating its applicability and effectiveness for antenna development.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3137198</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0894-9619</orcidid><orcidid>https://orcid.org/0000-0002-5659-4165</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.1860-1870 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2617499318 |
source | IEEE Open Access Journals |
subjects | Antenna design Antennas Antennas design Artificial intelligence Artificial neural networks Back propagation Back propagation networks computational intelligence Computational modeling Design optimization Dipole antennas Evolutionary algorithms Genetic algorithms Heuristic methods Impedance matching machine learning Mathematical models Methodology multi-objective optimization Multilayer perceptrons Multiple objective analysis Optimization Reflector antennas Sorting algorithms Training |
title | Computational Intelligence-Based Methodology for Antenna Development |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Intelligence-Based%20Methodology%20for%20Antenna%20Development&rft.jtitle=IEEE%20access&rft.au=Melo,%20Marcello%20Caldano%20De&rft.date=2022&rft.volume=10&rft.spage=1860&rft.epage=1870&rft.pages=1860-1870&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3137198&rft_dat=%3Cproquest_ieee_%3E2617499318%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-4406c19dad64fc0abd56ac2fab61e54affc9d72da024fdd32d356041f8541e6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2617499318&rft_id=info:pmid/&rft_ieee_id=9656850&rfr_iscdi=true |