Loading…
Wavenumber-explicit hp-FEM analysis for Maxwell's equations with impedance boundary conditions
The time-harmonic Maxwell equations at high wavenumber k in domains with an analytic boundary and impedance boundary conditions are considered. A wavenumber-explicit stability and regularity theory is developed that decomposes the solution into a part with finite Sobolev regularity that is controlle...
Saved in:
Published in: | arXiv.org 2023-08 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The time-harmonic Maxwell equations at high wavenumber k in domains with an analytic boundary and impedance boundary conditions are considered. A wavenumber-explicit stability and regularity theory is developed that decomposes the solution into a part with finite Sobolev regularity that is controlled uniformly in k and an analytic part. Using this regularity, quasi-optimality of the Galerkin discretization based on Nedelec elements of order p on a mesh with mesh size h is shown under the k-explicit scale resolution condition that a) kh/p is sufficient small and b) p/\ln k is bounded from below. |
---|---|
ISSN: | 2331-8422 |