Loading…

On regularity of weak solutions for the Navier–Stokes equations in general domains

Let u be a weak solution of the instationary Navier–Stokes equations in a completely general domain Ω⊆R3$\Omega \subseteq \mathbb {R}^3$ which additionally satisfies the strong energy inequality. Firstly, we prove that u is regular if the kinetic energy 12∥u(t)∥22$\frac{1}{2}\big \Vert u(t)\big \Ver...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Nachrichten 2021-12, Vol.294 (12), p.2302-2316
Main Authors: Duong, V. T. T., Khai, D. Q., Tri, N. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let u be a weak solution of the instationary Navier–Stokes equations in a completely general domain Ω⊆R3$\Omega \subseteq \mathbb {R}^3$ which additionally satisfies the strong energy inequality. Firstly, we prove that u is regular if the kinetic energy 12∥u(t)∥22$\frac{1}{2}\big \Vert u(t)\big \Vert _2^2$ is left‐side Hölder continuous with Hölder exponent 12$\frac{1}{2}$ and with a sufficiently small Hölder seminorm. This result extends the previous ones by several authors [5, 6, 7, 8] in which the domain Ω is additionally supposed to be bounded or have the uniform C2‐boundary ∂Ω$\partial \Omega$. Secondly, we show that if u(t)∈D(A14)$u(t) \in \mathbb {D}\Big(A^\frac{1}{4}\Big)$ and limδ→0+∥A14(u(t−δ)−u(t))∥2
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201900407