Loading…
Eternal vertex cover number of maximal outerplanar graphs
Eternal vertex cover problem is a variant of the classical vertex cover problem modeled as a two player attacker-defender game. Computing eternal vertex cover number of graphs is known to be NP-hard in general and the complexity status of the problem for bipartite graphs is open. There is a quadrati...
Saved in:
Published in: | arXiv.org 2022-01 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Eternal vertex cover problem is a variant of the classical vertex cover problem modeled as a two player attacker-defender game. Computing eternal vertex cover number of graphs is known to be NP-hard in general and the complexity status of the problem for bipartite graphs is open. There is a quadratic complexity algorithm known for this problem for chordal graphs. Maximal outerplanar graphs forms a subclass of chordal graphs, for which no algorithm of sub-quadratic time complexity is known. In this paper, we obtain a recursive algorithm of linear time for computing eternal vertex cover number of maximal outerplanar graphs. |
---|---|
ISSN: | 2331-8422 |