Loading…
Advanced Methods for Hydroxylation of Vegetable Oils, Unsaturated Fatty Acids and Their Alkyl Esters
Vegetable oils and their derivatives have great potential as renewable and sustainable raw materials for the production of polyurethanes and bio-based polyols. For industry an important process is their modification. Chemical reactions that are carried out on vegetable oils and their derivatives are...
Saved in:
Published in: | Coatings (Basel) 2022-01, Vol.12 (1), p.13 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vegetable oils and their derivatives have great potential as renewable and sustainable raw materials for the production of polyurethanes and bio-based polyols. For industry an important process is their modification. Chemical reactions that are carried out on vegetable oils and their derivatives are: transesterification, auto-oxidation, hydrogenation, epoxidation, hydroxylation, acrylation, isocyanation and others. One of the modifications are reactions performed on double bonds and/or carbonyl moieties of plants oils and their derivatives. These reactions result in products that are actively used as binders in coating materials due to their unique structural properties. In this manuscript, we describe important technological methods for the introduction of hydroxyl groups: opening of oxirane rings by nucleophilic reagents such as: water, alcohols, glycols, amino alcohols, carboxylic acids; direct hydroxylation of unsaturated bonds with carboxylic peracids in combination with hydrolysis of carboxyl groups and hydration; hydroformylation of unsaturated bonds with subsequent hydrogenation and alkoxylation; and ozonolysis of unsaturated bonds in combination with subsequent hydrogenation and alkoxylation. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings12010013 |