Loading…
A non-fragile robust observer design for uncertain time-delay fractional Itô stochastic systems with input nonlinearity: An SMC approach
This article considers the problem of non-fragile observer design for uncertain fractional Itô stochastic systems. The design is based on a sliding surface whose reachability in finite time is guaranteed by introducing a novel sliding mode control law. Employing the fractional infinitesimal operator...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering Journal of systems and control engineering, 2022-03, Vol.236 (3), p.607-619 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article considers the problem of non-fragile observer design for uncertain fractional Itô stochastic systems. The design is based on a sliding surface whose reachability in finite time is guaranteed by introducing a novel sliding mode control law. Employing the fractional infinitesimal operator and the related lemmas, the stochastic stability of the overall closed-loop system is transformed to the problem of solving a set of linear matrix inequalities. Addressing the fragility issue, a norm-bounded term is added to the observer gain, which prevents failure of the estimation error system. The adverse effects of the input nonlinearity and time-varying delay are alleviated by the proposed approach. Furthermore, the present method is investigated for the fractional Itô stochastic systems with known states. A numerical example is presented to illustrate the effectiveness of the proposed method. |
---|---|
ISSN: | 0959-6518 2041-3041 |
DOI: | 10.1177/09596518211040008 |