Loading…
Classical vs. non-Archimedean analysis: an approach via algebraic genericity
In this paper, we show new results and improvements of the non-Archimedean counterpart of classical analysis in the theory of lineability. Besides analyzing the algebraic genericity of sets of functions having properties regarding continuity, discontinuity, Lipschitzianity, differentiability and ana...
Saved in:
Published in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2022-04, Vol.116 (2), Article 72 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we show new results and improvements of the non-Archimedean counterpart of classical analysis in the theory of lineability. Besides analyzing the algebraic genericity of sets of functions having properties regarding continuity, discontinuity, Lipschitzianity, differentiability and analyticity, we also study the lineability of sets of sequences having properties concerning boundedness and convergence. In particular we show (among several other results) the algebraic genericity of: (i) functions that do not satisfy Liouville’s theorem, (ii) sequences that do not satisfy the classical theorem of Cèsaro, or (iii) functionals that do not satisfy the classical Hahn–Banach theorem. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-022-01209-5 |