Loading…
New moduli components of rank 2 bundles on projective space
We present a new family of monads whose cohomology is a stable rank 2 vector bundle on . We also study the irreducibility and smoothness together with a geometrical description of some of these families. These facts are used to construct a new infinite series of rational moduli components of stable...
Saved in:
Published in: | Sbornik. Mathematics 2021-11, Vol.212 (11), p.1503-1552 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a new family of monads whose cohomology is a stable rank 2 vector bundle on
. We also study the irreducibility and smoothness together with a geometrical description of some of these families. These facts are used to construct a new infinite series of rational moduli components of stable rank 2 vector bundles with trivial determinant and growing second Chern class. We also prove that the moduli space of stable rank 2 vector bundles with trivial determinant and second Chern class equal to 5 has exactly three irreducible rational components.
Bibliography: 40 titles. |
---|---|
ISSN: | 1064-5616 1468-4802 |
DOI: | 10.1070/SM9490 |