Loading…

The Morita-Baylis-Hillman reaction for non-electron-deficient olefins enabled by photoredox catalysis

A strategy for overcoming the limitation of the Morita-Baylis-Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report. A series of non-electron-deficient olefins underwent the MBH reaction smoothl...

Full description

Saved in:
Bibliographic Details
Published in:Chemical science (Cambridge) 2022-02, Vol.13 (5), p.1478-1483
Main Authors: Li, Long-Hai, Wei, Hao-Zhao, Wei, Yin, Shi, Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A strategy for overcoming the limitation of the Morita-Baylis-Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report. A series of non-electron-deficient olefins underwent the MBH reaction smoothly via a novel photoredox-quinuclidine dual catalysis. The in situ formed key β-quinuclidinium radical intermediates, derived from the addition of olefins with quinuclidinium radical cations, are used to enable the MBH reaction of non-electron-deficient olefins. On the basis of previous reports, a plausible mechanism is suggested. Mechanistic studies, such as radical probe experiments and density functional theory (DFT) calculations, were also conducted to support our proposed reaction pathways. A strategy for overcoming the limitation of the Morita-Baylis-Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report.
ISSN:2041-6520
2041-6539
DOI:10.1039/d1sc06784b