Loading…
Distinguishing Power-Law Uniform Random Graphs from Inhomogeneous Random Graphs Through Small Subgraphs
We investigate the asymptotic number of induced subgraphs in power-law uniform random graphs. We show that these induced subgraphs appear typically on vertices with specific degrees, which are found by solving an optimization problem. Furthermore, we show that this optimization problem allows to des...
Saved in:
Published in: | Journal of statistical physics 2022-03, Vol.186 (3), Article 37 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the asymptotic number of induced subgraphs in power-law uniform random graphs. We show that these induced subgraphs appear typically on vertices with specific degrees, which are found by solving an optimization problem. Furthermore, we show that this optimization problem allows to design a linear-time, randomized algorithm that distinguishes between uniform random graphs and random graph models that create graphs with approximately a desired degree sequence: the power-law rank-1 inhomogeneous random graph. This algorithm uses the fact that some specific induced subgraphs appear significantly more often in uniform random graphs than in rank-1 inhomogeneous random graphs. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-022-02884-9 |