Loading…
Theoretical Analysis of On-Chip Vertical Hybrid Plasmonic Nanograting
A complementary metal oxide semiconductor (CMOS) compatible photonic-plasmonic waveguide with nanoscale dimensions and better optical confinement has been proposed for the infrared (IR)–band applications. The design is based on the multi-layer hybrid plasmonic waveguide (Si–SiO 2 –Au) structure. The...
Saved in:
Published in: | Plasmonics (Norwell, Mass.) Mass.), 2022-02, Vol.17 (1), p.257-263 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A complementary metal oxide semiconductor (CMOS) compatible photonic-plasmonic waveguide with nanoscale dimensions and better optical confinement has been proposed for the infrared (IR)–band applications. The design is based on the multi-layer hybrid plasmonic waveguide (Si–SiO
2
–Au) structure. The 3D-finite element method (FEM)–based numerical simulations of single slot hybrid plasmonic waveguide (HPWG) confirms 2.5 dB/cm propagation loss and 15 μm
−2
confined intensity. Moreover, its application as dual-slot nanograting is studied with higher propagation length and ultra–low–dispersion near the 1550–nm wavelength. The proposed low-dispersion nanoscale grating design is suitable for future lab–on–chip nanophotonic integrated circuits. |
---|---|
ISSN: | 1557-1955 1557-1963 |
DOI: | 10.1007/s11468-021-01517-3 |