Loading…

Oxygenated‐bacterial‐cellulose nanofibers with hydrogel, antimicrobial, and controlled oxygen release properties for rapid wound healing

The most effective approach for wound healing improvement is entrapping and controlling the oxygen in a biocompatible polymer matrix through introducing hydrogen peroxide. In the research, the bacterial cellulose (BC) layers were oxygenated as a safe and excellent hydrogel to accelerate the wound he...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2022-04, Vol.139 (16), p.n/a
Main Authors: Fadakar Sarkandi, Aida, Montazer, Majid, Mahmoudi Rad, Mahnaz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The most effective approach for wound healing improvement is entrapping and controlling the oxygen in a biocompatible polymer matrix through introducing hydrogen peroxide. In the research, the bacterial cellulose (BC) layers were oxygenated as a safe and excellent hydrogel to accelerate the wound healing process. Indeed, the hydrogel‐containing hydrogen peroxide was obtained using the treatment of dry BC with 3% hydrogen peroxide for 5 h. The morphology, thermal behavior, crystalline and chemical structures, mechanical properties, water vapor permeability, degree of porosity, oxygen release, water holding capacity, and drying time of the treated layers were investigated. Furthermore, the calculated porosity showed about seven times more pore area. The dissolved oxygen results indicated the well‐trapped oxygen in BC with a prolonged‐release time of 20 days. Moreover, the 100% antibacterial and antifungal activities and excellent wound healing properties without cytotoxic effects specified the ability of BC to trap and release oxygen for efficient wound healing. Hence, the study introduces a functionalized naturally driven hydrogel layer with oxygen delivery, safe antimicrobial properties, and prolonged drying time.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.51974