Loading…

Fayalite Formation Through Hydrothermal Experiments: Insights into Early Fluid-assisted Aqueous Alteration Processes on Asteroids

In order to understand the effects of the earliest fluid-assisted hydration processes on asteroids, we performed one hydrothermal experiment using three different reactants (FeO-rich amorphous silicates, iron metal powder, and water) at conditions informed by our current state of knowledge of astero...

Full description

Saved in:
Bibliographic Details
Published in:Meteoritics & planetary science 2022-02, Vol.57 (2), p.381-391
Main Authors: Dobrică, E, Nuth, J A, Brearley, A J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to understand the effects of the earliest fluid-assisted hydration processes on asteroids, we performed one hydrothermal experiment using three different reactants (FeO-rich amorphous silicates, iron metal powder, and water) at conditions informed by our current state of knowledge of asteroidal alteration. This experiment provides, for the first time, clear evidence that the growth of fayalite can occur during hydrotherma lalteration, as described previously in meteorites. These newly formed fayalite crystals are elongated and porous, similar to the ones described in CV3, CK, and ordinary chondrites. The results show that (1) fayalite could form even if chemical equilibrium was not reached in the experiment, at a water to rock mass ratio (0.4 W/R at the beginning of the experiment) higher than the values calculated to be thermodynamically viable at equilibrium(W/R > 0.2); (2) the composition and the texture of the reactants changed during the hydrothermal alteration process, suggesting that the reactants, especially the amorphous silicates, underwent dissolution and reprecipitation; (3) fayalite can form at low temperature(220°C), which is at the transition between hydrothermal alteration and fluid-assisted metamorphism in chondrites. The results are consistent with previous mineralogical observations and thermodynamic models, which suggest that fayalite crystals are formed on asteroidal parent bodies by the interaction between a hydrothermal fluid and disequilibrium assemblages that compose the pristine materials that condensed in the early solar nebula. This experiment suggests that two variables play a very important role in the formation off ayalite during the hydrothermal growth (W/R mass ratio and the fluid composition). These results are similar to the recent observations of the fine-grained matrix of ordinary chondrites.
ISSN:1086-9379
1945-5100
DOI:10.1111/maps.13765