Loading…
An ocean modeling study to quantify wind forcing and oceanic mixing effects on the tropical North Pacific subsurface warm bias in CMIP and OMIP simulations
Sea surface temperature (SST) bias in the climate models has been a focus in the past, but subsurface temperature biases have not received much attention yet. In this study, subsurface temperature biases in the tropical North Pacific (TNP) are investigated by analyzing the CMIP6, CMIP5 and OMIP prod...
Saved in:
Published in: | Climate dynamics 2022-02, Vol.58 (3-4), p.999-1014 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sea surface temperature (SST) bias in the climate models has been a focus in the past, but subsurface temperature biases have not received much attention yet. In this study, subsurface temperature biases in the tropical North Pacific (TNP) are investigated by analyzing the CMIP6, CMIP5 and OMIP products, and by performing ocean model simulations. It is found that almost all the CMIP and OMIP simulations have a pronounced subsurface warm bias (SWB) in the northeastern tropical Pacific (NETP), and the model developments over the past decade do not indicate obvious improvements in bias pattern and magnitude from CMIP5 to the latest version CMIP6. This SWB is primarily caused by the model deficiencies in the simulated surface wind stress curl (WSC) in the NETP, which is too weak to produce a sufficient Ekman upwelling, a bias that also exists in OMIP simulations. The uncertainties in the parameterizations of the oceanic vertical mixing processes also make a great contribution, and it is demonstrated that the estimated oceanic vertical diffusivities are overestimated both in the upper boundary layer and the interior in the CMIP and OMIP simulations. The relationships between the SWB and the misrepresented oceanic vertical mixing processes are investigated by conducting several ocean-only experiments, in which the upper boundary layer mixing is modified by reducing the wind stirring effect in the Kraus-Turner type bulk mixed-layer scheme, and the interior mixing is constrained by using the Argo-derived diffusivity. By applying these modifications to oceanic vertical mixing schemes, the SWB is greatly reduced in the NETP. The consequences of this SWB are further analyzed. Because the thermal structure in the NETP can influence the simulations of oceanic circulations and equatorial upper-ocean thermal structure, the large SWB in the CMIP6 models tends to produce a weak equatorward water transport in the subsurface TNP, a weak equatorial upwelling and a warm equatorial upper ocean. |
---|---|
ISSN: | 0930-7575 1432-0894 |
DOI: | 10.1007/s00382-021-05946-y |