Loading…

Adsorption of Malachite Green and Pb2+ by KMnO4-Modified Biochar: Insights and Mechanisms

In this study, the feasibility and mechanism of Pb2+ and malachite green (MG) adsorption from wastewater using KMnO4-modified bamboo biochar (KBC) was evaluated. The KBC was characterized by SEM–EDS, XRD, FTIR and XPS. The adsorption results for Pb2+ conformed to pseudo-second-order kinetics and the...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2022-02, Vol.14 (4), p.2040
Main Authors: Deng, Hua, Zhang, Junyu, Huang, Rui, Wang, Wei, Meng, Mianwu, Hu, Lening, Gan, Weixing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the feasibility and mechanism of Pb2+ and malachite green (MG) adsorption from wastewater using KMnO4-modified bamboo biochar (KBC) was evaluated. The KBC was characterized by SEM–EDS, XRD, FTIR and XPS. The adsorption results for Pb2+ conformed to pseudo-second-order kinetics and the Langmuir model theory. Unlike the case for Pb2+, the Freundlich model better described the adsorption behaviour of MG, indicating that adsorption occurred within multiple molecular layers. Both pseudo-first-order kinetics and pseudo-second-order kinetics fit the MG adsorption data well, indicating that physical adsorption was involved in the adsorption process. In addition, the maximum adsorption capacity for Pb2+/MG was 123.47/1111.11 mg·g−1, KBC had high adsorption capacities for Pb2+ and MG, and the mechanisms of Pb2+ adsorption were mineral precipitation, functional group complexation, and cation-π interactions, while the main mechanisms for MG adsorption were pore filling, π–π interactions, and functional group complexation. In this study, KMnO4-modified biochar was prepared and used as an efficient adsorbent, and showed good application prospects for treatment of wastewater containing MG and Pb2+.
ISSN:2071-1050
2071-1050
DOI:10.3390/su14042040