Loading…

Descriptellation: Deep Learned Constellation Descriptors

Current descriptors for global localization often struggle under vast viewpoint or appearance changes. One possible improvement is the addition of topological information on semantic objects. However, handcrafted topological descriptors are hard to tune and not robust to environmental noise, drastic...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-09
Main Authors: Xing, Chunwei, Sun, Xinyu, Cramariuc, Andrei, Gull, Samuel, Chung, Jen Jen, Cadena, Cesar, Siegwart, Roland, Tschopp, Florian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current descriptors for global localization often struggle under vast viewpoint or appearance changes. One possible improvement is the addition of topological information on semantic objects. However, handcrafted topological descriptors are hard to tune and not robust to environmental noise, drastic perspective changes, object occlusion or misdetections. To solve this problem, we formulate a learning-based approach by modelling semantically meaningful object constellations as graphs and using Deep Graph Convolution Networks to map a constellation to a descriptor. We demonstrate the effectiveness of our Deep Learned Constellation Descriptor (Descriptellation) on two real-world datasets. Although Descriptellation is trained on randomly generated simulation datasets, it shows good generalization abilities on real-world datasets. Descriptellation also outperforms state-of-the-art and handcrafted constellation descriptors for global localization, and is robust to different types of noise. The code is publicly available at https://github.com/ethz-asl/Descriptellation.
ISSN:2331-8422