Loading…
Descriptellation: Deep Learned Constellation Descriptors
Current descriptors for global localization often struggle under vast viewpoint or appearance changes. One possible improvement is the addition of topological information on semantic objects. However, handcrafted topological descriptors are hard to tune and not robust to environmental noise, drastic...
Saved in:
Published in: | arXiv.org 2022-09 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Xing, Chunwei Sun, Xinyu Cramariuc, Andrei Gull, Samuel Chung, Jen Jen Cadena, Cesar Siegwart, Roland Tschopp, Florian |
description | Current descriptors for global localization often struggle under vast viewpoint or appearance changes. One possible improvement is the addition of topological information on semantic objects. However, handcrafted topological descriptors are hard to tune and not robust to environmental noise, drastic perspective changes, object occlusion or misdetections. To solve this problem, we formulate a learning-based approach by modelling semantically meaningful object constellations as graphs and using Deep Graph Convolution Networks to map a constellation to a descriptor. We demonstrate the effectiveness of our Deep Learned Constellation Descriptor (Descriptellation) on two real-world datasets. Although Descriptellation is trained on randomly generated simulation datasets, it shows good generalization abilities on real-world datasets. Descriptellation also outperforms state-of-the-art and handcrafted constellation descriptors for global localization, and is robust to different types of noise. The code is publicly available at https://github.com/ethz-asl/Descriptellation. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2635121643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635121643</sourcerecordid><originalsourceid>FETCH-proquest_journals_26351216433</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcEktTi7KLChJzclJLMnMz7NScElNLVDwSU0syktNUXDOzyuGyynAFOcXFfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRmbGpoZGhmYmxMXGqAHWzNnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635121643</pqid></control><display><type>article</type><title>Descriptellation: Deep Learned Constellation Descriptors</title><source>Publicly Available Content Database</source><creator>Xing, Chunwei ; Sun, Xinyu ; Cramariuc, Andrei ; Gull, Samuel ; Chung, Jen Jen ; Cadena, Cesar ; Siegwart, Roland ; Tschopp, Florian</creator><creatorcontrib>Xing, Chunwei ; Sun, Xinyu ; Cramariuc, Andrei ; Gull, Samuel ; Chung, Jen Jen ; Cadena, Cesar ; Siegwart, Roland ; Tschopp, Florian</creatorcontrib><description>Current descriptors for global localization often struggle under vast viewpoint or appearance changes. One possible improvement is the addition of topological information on semantic objects. However, handcrafted topological descriptors are hard to tune and not robust to environmental noise, drastic perspective changes, object occlusion or misdetections. To solve this problem, we formulate a learning-based approach by modelling semantically meaningful object constellations as graphs and using Deep Graph Convolution Networks to map a constellation to a descriptor. We demonstrate the effectiveness of our Deep Learned Constellation Descriptor (Descriptellation) on two real-world datasets. Although Descriptellation is trained on randomly generated simulation datasets, it shows good generalization abilities on real-world datasets. Descriptellation also outperforms state-of-the-art and handcrafted constellation descriptors for global localization, and is robust to different types of noise. The code is publicly available at https://github.com/ethz-asl/Descriptellation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Background noise ; Datasets ; Localization ; Object recognition ; Occlusion ; Topology</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2635121643?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Xing, Chunwei</creatorcontrib><creatorcontrib>Sun, Xinyu</creatorcontrib><creatorcontrib>Cramariuc, Andrei</creatorcontrib><creatorcontrib>Gull, Samuel</creatorcontrib><creatorcontrib>Chung, Jen Jen</creatorcontrib><creatorcontrib>Cadena, Cesar</creatorcontrib><creatorcontrib>Siegwart, Roland</creatorcontrib><creatorcontrib>Tschopp, Florian</creatorcontrib><title>Descriptellation: Deep Learned Constellation Descriptors</title><title>arXiv.org</title><description>Current descriptors for global localization often struggle under vast viewpoint or appearance changes. One possible improvement is the addition of topological information on semantic objects. However, handcrafted topological descriptors are hard to tune and not robust to environmental noise, drastic perspective changes, object occlusion or misdetections. To solve this problem, we formulate a learning-based approach by modelling semantically meaningful object constellations as graphs and using Deep Graph Convolution Networks to map a constellation to a descriptor. We demonstrate the effectiveness of our Deep Learned Constellation Descriptor (Descriptellation) on two real-world datasets. Although Descriptellation is trained on randomly generated simulation datasets, it shows good generalization abilities on real-world datasets. Descriptellation also outperforms state-of-the-art and handcrafted constellation descriptors for global localization, and is robust to different types of noise. The code is publicly available at https://github.com/ethz-asl/Descriptellation.</description><subject>Background noise</subject><subject>Datasets</subject><subject>Localization</subject><subject>Object recognition</subject><subject>Occlusion</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcEktTi7KLChJzclJLMnMz7NScElNLVDwSU0syktNUXDOzyuGyynAFOcXFfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRmbGpoZGhmYmxMXGqAHWzNnk</recordid><startdate>20220914</startdate><enddate>20220914</enddate><creator>Xing, Chunwei</creator><creator>Sun, Xinyu</creator><creator>Cramariuc, Andrei</creator><creator>Gull, Samuel</creator><creator>Chung, Jen Jen</creator><creator>Cadena, Cesar</creator><creator>Siegwart, Roland</creator><creator>Tschopp, Florian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220914</creationdate><title>Descriptellation: Deep Learned Constellation Descriptors</title><author>Xing, Chunwei ; Sun, Xinyu ; Cramariuc, Andrei ; Gull, Samuel ; Chung, Jen Jen ; Cadena, Cesar ; Siegwart, Roland ; Tschopp, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26351216433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Background noise</topic><topic>Datasets</topic><topic>Localization</topic><topic>Object recognition</topic><topic>Occlusion</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Xing, Chunwei</creatorcontrib><creatorcontrib>Sun, Xinyu</creatorcontrib><creatorcontrib>Cramariuc, Andrei</creatorcontrib><creatorcontrib>Gull, Samuel</creatorcontrib><creatorcontrib>Chung, Jen Jen</creatorcontrib><creatorcontrib>Cadena, Cesar</creatorcontrib><creatorcontrib>Siegwart, Roland</creatorcontrib><creatorcontrib>Tschopp, Florian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Chunwei</au><au>Sun, Xinyu</au><au>Cramariuc, Andrei</au><au>Gull, Samuel</au><au>Chung, Jen Jen</au><au>Cadena, Cesar</au><au>Siegwart, Roland</au><au>Tschopp, Florian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Descriptellation: Deep Learned Constellation Descriptors</atitle><jtitle>arXiv.org</jtitle><date>2022-09-14</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Current descriptors for global localization often struggle under vast viewpoint or appearance changes. One possible improvement is the addition of topological information on semantic objects. However, handcrafted topological descriptors are hard to tune and not robust to environmental noise, drastic perspective changes, object occlusion or misdetections. To solve this problem, we formulate a learning-based approach by modelling semantically meaningful object constellations as graphs and using Deep Graph Convolution Networks to map a constellation to a descriptor. We demonstrate the effectiveness of our Deep Learned Constellation Descriptor (Descriptellation) on two real-world datasets. Although Descriptellation is trained on randomly generated simulation datasets, it shows good generalization abilities on real-world datasets. Descriptellation also outperforms state-of-the-art and handcrafted constellation descriptors for global localization, and is robust to different types of noise. The code is publicly available at https://github.com/ethz-asl/Descriptellation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2635121643 |
source | Publicly Available Content Database |
subjects | Background noise Datasets Localization Object recognition Occlusion Topology |
title | Descriptellation: Deep Learned Constellation Descriptors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Descriptellation:%20Deep%20Learned%20Constellation%20Descriptors&rft.jtitle=arXiv.org&rft.au=Xing,%20Chunwei&rft.date=2022-09-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2635121643%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26351216433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635121643&rft_id=info:pmid/&rfr_iscdi=true |