Loading…

Interplay between nonlinear spectral shift and nonlinear damping of spin waves in ultrathin YIG waveguides

We use the phase-resolved imaging to directly study the nonlinear modification of the wavelength of spin waves propagating in 100-nm thick, in-plane magnetized YIG waveguides. We show that, by using moderate microwave powers, one can realize spin waves with large amplitudes corresponding to precessi...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-03
Main Authors: Lake, S R, Divinskiy, B, Schmidt, G, Demokritov, S O, Demidov, V E
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We use the phase-resolved imaging to directly study the nonlinear modification of the wavelength of spin waves propagating in 100-nm thick, in-plane magnetized YIG waveguides. We show that, by using moderate microwave powers, one can realize spin waves with large amplitudes corresponding to precession angles in excess of 10 degrees and nonlinear wavelength variation of up to 18 percent in this system. We also find that, at large precession angles, the propagation of spin waves is strongly affected by the onset of nonlinear damping, which results in a strong spatial dependence of the wavelength. This effect leads to a spatially dependent controllability of the wavelength by the microwave power. Furthermore, it leads to the saturation of nonlinear spectral shift's effects several micrometers away from the excitation point. These findings are important for the development of nonlinear, integrated spin-wave signal processing devices and can be used to optimize their characteristics.
ISSN:2331-8422
DOI:10.48550/arxiv.2203.04018