Loading…
PhotoelastNet: a deep convolutional neural network for evaluating the stress field by using a single color photoelasticity image
Quantifying the stress field induced into a piece when it is loaded is important for engineering areas since it allows the possibility to characterize mechanical behaviors and fails caused by stress. For this task, digital photoelasticity has been highlighted by its visual capability of representing...
Saved in:
Published in: | Applied optics (2004) 2022-03, Vol.61 (7), p.D50 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantifying the stress field induced into a piece when it is loaded is important for engineering areas since it allows the possibility to characterize mechanical behaviors and fails caused by stress. For this task, digital photoelasticity has been highlighted by its visual capability of representing the stress information through images with isochromatic fringe patterns. Unfortunately, demodulating such fringes remains a complicated process that, in some cases, depends on several acquisitions, e.g., pixel-by-pixel comparisons, dynamic conditions of load applications, inconsistence corrections, dependence of users, fringe unwrapping processes, etc. Under these drawbacks and taking advantage of the power results reported on deep learning, such as the fringe unwrapping process, this paper develops a deep convolutional neural network for recovering the stress field wrapped into color fringe patterns acquired through digital photoelasticity studies. Our model relies on an untrained convolutional neural network to accurately demodulate the stress maps by inputting only one single photoelasticity image. We demonstrate that the proposed method faithfully recovers the stress field of complex fringe distributions on simulated images with an averaged performance of 92.41% according to the SSIM metric. With this, experimental cases of a disk and ring under compression were evaluated, achieving an averaged performance of 85% in the SSIM metric. These results, on the one hand, are in concordance with new tendencies in the optic community to deal with complicated problems through machine-learning strategies; on the other hand, it creates a new perspective in digital photoelasticity toward demodulating the stress field for a wider quantity of fringe distributions by requiring one single acquisition. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.444563 |