Loading…
Silver-mean canonical quasicrystalline-generated phononic waveguides
We investigate propagation of harmonic axial waves in a class of periodic two-phase phononic rods whose elementary cells are designed adopting the quasicrystalline silver mean Fibonacci substitution rule. The stop-/pass-band spectra of this family are studied with the aid of a trace-map formalism wh...
Saved in:
Published in: | Journal of sound and vibration 2022-04, Vol.523, p.116679, Article 116679 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate propagation of harmonic axial waves in a class of periodic two-phase phononic rods whose elementary cells are designed adopting the quasicrystalline silver mean Fibonacci substitution rule. The stop-/pass-band spectra of this family are studied with the aid of a trace-map formalism which provides a geometrical interpretation of the recursive rule governing traces of the relevant transmission matrices: the traces of two consecutive elementary cells can be represented as a point on a surface defined by an invariant function of the circular frequency, and the recursivity implies the description of an orbit on the surface. We show that, for a sub-class of silver mean-generated waveguides, the orbits predicted by the trace map at specific frequencies are periodic. The configurations for which this occurs, called canonical, are also associated with periodic stop-/pass-band diagrams along the frequency domain. Several types of periodic orbits exist and each corresponds to a self-similar portion of the dynamic spectra whose scaling law can be studied by linearising the trace map in the neighbourhood of the orbit. The obtained results provide both a new piece of theory to better understand the behaviour of classical two-phase composite periodic waveguides and an important advancement towards design and realisation of phononic quasicrystalline-based metamaterials.
•Canonical silver-mean Fibonacci phononic waveguides are studied.•An invariant function governs the dynamics of the waveguide.•The stop-/pass-band layout is periodic and displays self-similar features.•The scaling factor can be estimated quantitatively. |
---|---|
ISSN: | 0022-460X 1095-8568 |
DOI: | 10.1016/j.jsv.2021.116679 |