Loading…

SINR percolation for Cox point processes with random powers

Signal-to-interference-plus-noise ratio (SINR) percolation is an infinite-range dependent variant of continuum percolation modeling connections in a telecommunication network. Unlike in earlier works, in the present paper the transmitted signal powers of the devices of the network are assumed random...

Full description

Saved in:
Bibliographic Details
Published in:Advances in applied probability 2022-03, Vol.54 (1), p.227-253
Main Authors: Jahnel, Benedikt, Tóbiás, András
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Signal-to-interference-plus-noise ratio (SINR) percolation is an infinite-range dependent variant of continuum percolation modeling connections in a telecommunication network. Unlike in earlier works, in the present paper the transmitted signal powers of the devices of the network are assumed random, independent and identically distributed, and possibly unbounded. Additionally, we assume that the devices form a stationary Cox point process, i.e., a Poisson point process with stationary random intensity measure, in two or more dimensions. We present the following main results. First, under suitable moment conditions on the signal powers and the intensity measure, there is percolation in the SINR graph given that the device density is high and interferences are sufficiently reduced, but not vanishing. Second, if the interference cancellation factor $\gamma$ and the SINR threshold $\tau$ satisfy $\gamma \geq 1/(2\tau)$ , then there is no percolation for any intensity parameter. Third, in the case of a Poisson point process with constant powers, for any intensity parameter that is supercritical for the underlying Gilbert graph, the SINR graph also percolates with some small but positive interference cancellation factor.
ISSN:0001-8678
1475-6064
DOI:10.1017/apr.2021.25