Loading…
Investigating radiatively driven, magnetised plasmas with a university scale pulsed-power generator
We present first results from a novel experimental platform which is able to access physics relevant to topics including indirect-drive magnetised ICF; laser energy deposition; various topics in atomic physics; and laboratory astrophysics (for example the penetration of B-fields into HED plasmas). T...
Saved in:
Published in: | arXiv.org 2022-03 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present first results from a novel experimental platform which is able to access physics relevant to topics including indirect-drive magnetised ICF; laser energy deposition; various topics in atomic physics; and laboratory astrophysics (for example the penetration of B-fields into HED plasmas). This platform uses the X-Rays from a wire array Z-Pinch to irradiate a silicon target, producing an outflow of ablated plasma. The ablated plasma expands into ambient, dynamically significant B-fields (~5 T) which are supported by the current flowing through the Z-Pinch. The outflows have a well-defined (quasi-1D) morphology, enabling the study of fundamental processes typically only available in more complex, integrated schemes. Experiments were fielded on the MAGPIE pulsed-power generator (1.4 MA, 240 ns rise time). On this machine a wire array Z-Pinch produces an X-Ray pulse carrying a total energy of ~15 kJ over ~30 ns. This equates to an average brightness temperature of around 10 eV on-target. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2203.11881 |