Loading…
A Robust and Accurate Adaptive Approximation Method for a Diffuse-Interface Model of Binary-Fluid Flows
We present an adaptive simulation framework for binary-fluid flows, based on the Abels-Garcke-Gr\"un Navier-Stokes-Cahn-Hilliard (AGG NSCH) diffuse-interface model. The adaptive-refinement procedure is guided by a two-level hierarchical a-posteriori error estimate, and it effectively resolves t...
Saved in:
Published in: | arXiv.org 2022-03 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present an adaptive simulation framework for binary-fluid flows, based on the Abels-Garcke-Gr\"un Navier-Stokes-Cahn-Hilliard (AGG NSCH) diffuse-interface model. The adaptive-refinement procedure is guided by a two-level hierarchical a-posteriori error estimate, and it effectively resolves the spatial multiscale behavior of the diffuse-interface model. To improve the robustness of the solution procedure and avoid severe time-step restrictions for small-interface thicknesses, we introduce an \(\varepsilon\)-continuation procedure, in which the diffuse interface thickness (\(\varepsilon\)) are enlarged on coarse meshes, and the mobility is scaled accordingly. To further accelerate the computations and improve robustness, we apply a modified Backward Euler scheme in the initial stages of the adaptive-refinement procedure in each time step, and a Crank--Nicolson scheme in the final stages of the refinement procedure. To enhance the robustness of the nonlinear solution procedure, we introduce a partitioned solution procedure for the linear tangent problems in Newton's method, based on a decomposition of the NSCH system into its NS and CH subsystems. We conduct a systematic investigation of the conditioning of the monolithic NSCH tangent matrix and of its NS and CH subsystems for a representative 2D model problem. To illustrate the properties of the presented adaptive simulation framework, we present numerical results for a 2D oscillating water droplet suspended in air, and we validate the obtained results versus those of a corresponding sharp-interface model. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2203.12584 |