Loading…

Nonlinear stability analysis and numerical continuation of bifurcations of a rotor supported by floating ring bearings

Floating ring bearings have been widely used, over the last decades, in rotors of automotive turbochargers because of their improved damping behavior and their good emergency-operating capabilities. They also offer a cost-effective design and have good assembly properties. Nevertheless, rotors with...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2022-03, Vol.236 (5), p.2172-2184
Main Author: Amamou, Amira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Floating ring bearings have been widely used, over the last decades, in rotors of automotive turbochargers because of their improved damping behavior and their good emergency-operating capabilities. They also offer a cost-effective design and have good assembly properties. Nevertheless, rotors with floating ring bearings show vibration effects of nonlinear nature induced by self-excited oscillations originating from the bearing oil films (oil whirl/whip phenomena) and may exhibit various nonlinear vibration effects which may cause damage to the rotor. In order to investigate these dynamic phenomena, this paper has developed a nonlinear model of a perfectly balanced rigid rotor supported by two identical floating ring bearings with consideration of their vibration behavior mainly governed by fluid dynamics. The dimensionless hydrodynamic forces of floating ring bearings have been derived based on the short bearing theory and the half Sommerfeld solution. Using the numerical continuation approach, different bifurcations are detected when a control parameter, the journal speed, is varied. Depending on the system’s physical parameters, the rotor can show stable or unstable limit cycles which themselves may collapse beyond a certain rotor speed to exhibit a fold bifurcation. Bifurcation analysis is performed to investigate the occurring instabilities and nonlinear phenomena. Such results explain the instabilities characteristics of the floating ring bearing in high-speed applications. It has also been found that the selection of the bearing modulus plays an important role in the characterization of the rotor stability threshold speed and bifurcation sequences. An understanding of the system’s nonlinear behavior serves as the basis for new and rational criteria for the design and the safe operation of rotating machines.
ISSN:0954-4062
2041-2983
DOI:10.1177/09544062211026340