Loading…

Experimental studies on friction stir welding of aluminium alloy 5083 and prediction of temperature distribution using arbitrary Lagrangian–Eulerian-based finite element method

The present work focused on welding aluminium alloy 5083 using the friction stir welding process. Suitable welding process parameters were identified to fabricate a defect-free butt joint with a tool rotational speed of 1600 rpm, traverse speed of 20 mm/min and tilt angle of 3°. The microstructure a...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2022-05, Vol.236 (5), p.1067-1076
Main Authors: Pramod, R, Jain, Vikram Kumar S, Kumar, S Mohan, Girinath, B, Kannan, A Rajesh, Shanmugam, N Siva
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present work focused on welding aluminium alloy 5083 using the friction stir welding process. Suitable welding process parameters were identified to fabricate a defect-free butt joint with a tool rotational speed of 1600 rpm, traverse speed of 20 mm/min and tilt angle of 3°. The microstructure at the nugget zone, thermo mechanically affected zone, heat-affected zone and base metal zone are examined. Mechanical properties of the weldment exhibited promising results with an average joint efficiency and hardness of 75.70% and 94.0 ± 5.0 vickers hardness, respectively. Fractography revealed ductile mode of failure in base and weld metal tensile samples. Furthermore, a 3D thermomechanical finite element model was utilized to simulate the friction stir welding process using the selected process parameters. Arbitrary Lagrangian–Eulerian-based model aided in predicting residual stress distributions and thermal history during the friction stir welding process.
ISSN:1464-4207
2041-3076
DOI:10.1177/14644207211068118