Loading…
A computational workflow for predicting cancer neoantigens
Neo-antigens presented on cell surface play a pivotal role in the success of immunotherapies. Peptides derived from mutant proteins are thought to be the primary source of neo-antigens presented on the surface of cancer cells. Mutation data from cancer genome sequencing is often used to predict canc...
Saved in:
Published in: | Bioinformation 2022-03, Vol.18 (3), p.214 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neo-antigens presented on cell surface play a pivotal role in the success of immunotherapies. Peptides derived from mutant proteins are thought to be the primary source of neo-antigens presented on the surface of cancer cells. Mutation data from cancer genome sequencing is often used to predict cancer neo-antigens. However, this strategy is associated with significant false positives as many coding mutations may not be expressed at the protein level. Hence, we describe a computational workflow to integrate genomic and proteomic data to predictpotential neo-antigens. |
---|---|
ISSN: | 0973-8894 0973-2063 |
DOI: | 10.6026/97320630018214 |