Loading…
Fractional dynamics and stability analysis of COVID-19 pandemic model under the harmonic mean type incidence rate
In this research, COVID-19 model is formulated by incorporating harmonic mean type incidence rate which is more realistic in average speed. Basic reproduction number, equilibrium points, and stability of the proposed model is established under certain conditions. Runge-Kutta fourth order approximati...
Saved in:
Published in: | Computer methods in biomechanics and biomedical engineering 2022-05, Vol.25 (6), p.619-640 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this research, COVID-19 model is formulated by incorporating harmonic mean type incidence rate which is more realistic in average speed. Basic reproduction number, equilibrium points, and stability of the proposed model is established under certain conditions. Runge-Kutta fourth order approximation is used to solve the deterministic model. The model is then fractionalized by using Caputo-Fabrizio derivative and the existence and uniqueness of the solution are proved by using Banach and Leray-Schauder alternative type theorems. For the fractional numerical simulations, we use the Adam-Moulton scheme. Sensitivity analysis of the proposed deterministic model is studied to identify those parameters which are highly influential on basic reproduction number. |
---|---|
ISSN: | 1025-5842 1476-8259 |
DOI: | 10.1080/10255842.2021.1972096 |