Loading…

Synthesis of lanthanum-modified clay soil-based adsorbent for the fluoride removal from an aqueous solution and groundwater through batch and column process: mechanism and kinetics

In the present work, pond clay was modified with lanthanum and applied for fluoride uptake from an aqueous environment. The clay soil was treated with a 0.1 M solution of lanthanum oxide and heated at 500 ℃ for 90 min in a muffle furnace. The modified clay was characterized by the following techniqu...

Full description

Saved in:
Bibliographic Details
Published in:Environmental earth sciences 2022-05, Vol.81 (9), Article 253
Main Authors: Bhan, Chandra, Singh, Jiwan, Sharma, Yogesh Chandra, Koduru, Janardhan Reddy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present work, pond clay was modified with lanthanum and applied for fluoride uptake from an aqueous environment. The clay soil was treated with a 0.1 M solution of lanthanum oxide and heated at 500 ℃ for 90 min in a muffle furnace. The modified clay was characterized by the following techniques: particle size analysis, zeta potential, Fourier-transform infrared, scanning electron microscopy, transmission electron microscopy, pH at the zero point of charge, X-ray diffraction, Brunauer–Emmett–Teller, and X-ray photoelectron spectroscopy. The adsorption experiments revealed that modified clay soil was very effective in removing fluoride with an adsorption capacity of 1.96 mg/g. The fluoride removal was followed well with Langmuir isotherm ( R 2 = 0.999), pseudo-second-order kinetics ( R 2 = 1), and the adsorption was an exothermic process. The performance of lanthanum-modified clay (LMC) in a fixed bed column was evaluated using different models, including the Thomas, Adams–Bohart, Yoon–Nelson, and Clark models. A regeneration study was compared with NaOH and NaHCO 3 and successfully performed for four adsorption cycles. A probable mechanism is proposed including ligand exchange, electrostatic attraction, and inner complexation for fluoride adsorption on the LMC. The developed adsorbent was also tested for the treatment of natural groundwater.
ISSN:1866-6280
1866-6299
DOI:10.1007/s12665-022-10377-x