Loading…
A semiparametric Bayesian approach to binomial distribution logistic mixed-effects models for longitudinal data
Logistic mixed-effects models are widely used to study the relationship between the binary response and covariates for longitudinal data analysis, where the random effects are typically assumed to have a fully parametric distribution. As this assumption is likely limited or unreasonable in a multitu...
Saved in:
Published in: | Journal of statistical computation and simulation 2022-05, Vol.92 (7), p.1438-1456 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Logistic mixed-effects models are widely used to study the relationship between the binary response and covariates for longitudinal data analysis, where the random effects are typically assumed to have a fully parametric distribution. As this assumption is likely limited or unreasonable in a multitude of practical researches, a semiparametric Bayesian approach for relaxing it is developed in this paper. In the context of binomial distribution logistic mixed-effects models, a general Bayesian framework is presented in which a semiparametric hierarchical modelling with an approximate truncated Dirichlet process prior distribution is specified for the random effects. The stick-breaking prior and the blocked Gibbs sampler using Pólya-Gamma mixture are employed to efficiently sample in the posterior analysis. Besides, a procedure calculating DIC for Bayesian model comparison is addressed. The methodology is demonstrated through simulation studies and a real example. |
---|---|
ISSN: | 0094-9655 1563-5163 |
DOI: | 10.1080/00949655.2021.1998500 |