Loading…
Neuromarketing Solutions based on EEG Signal Analysis using Machine Learning
Marketing campaigns that promote and market various consumer products are a well-known strategy for increasing sales and market awareness. This simply means the profit of a manufacturing unit would increase. "Neuromarketing" refers to the use of unconscious mechanisms to determine customer...
Saved in:
Published in: | International journal of advanced computer science & applications 2022, Vol.13 (1) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Marketing campaigns that promote and market various consumer products are a well-known strategy for increasing sales and market awareness. This simply means the profit of a manufacturing unit would increase. "Neuromarketing" refers to the use of unconscious mechanisms to determine customer preferences for decision-making and behavior prediction. In this work, a predictive modeling method is proposed for recognizing product consumer preferences to online (E-commerce) products as “Likes” and “Dislikes”. Volunteers of various ages were exposed to a variety of consumer products, and their EEG signals and product preferences were recorded. Artificial Neural Networks and other classifiers such as Logistic Regression, Decision Tree Classifier, K-Nearest Neighbors, and Support Vector Machine were used to perform product-wise and subject-wise classification using a user-independent testing method. Though, the subject-wise classification results were relatively low with artificial neural networks (ANN) achieving 50.40 percent and k-Nearest Neighbors achieving 60.89 percent. Furthermore, the results of product-wise classification were relatively higher with 81.23 percent using Artificial Neural Networks and 80.38 percent using Support Vector Machine. |
---|---|
ISSN: | 2158-107X 2156-5570 |
DOI: | 10.14569/IJACSA.2022.0130137 |