Loading…
Using LinkedIn Endorsements to Reinforce an Ontology and Machine Learning-Based Recommender System to Improve Professional Skills
Nowadays, social networks have become highly relevant in the professional field, in terms of the possibility of sharing profiles, skills and jobs. LinkedIn has become the social network par excellence, owing to its content in professional and training information and where there are also endorsement...
Saved in:
Published in: | Electronics (Basel) 2022-04, Vol.11 (8), p.1190 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nowadays, social networks have become highly relevant in the professional field, in terms of the possibility of sharing profiles, skills and jobs. LinkedIn has become the social network par excellence, owing to its content in professional and training information and where there are also endorsements, which are validations of the skills of users that can be taken into account in the recruitment process, as well as in the recommender system. In order to determine how endorsements influence Lifelong Learning course recommendations for professional skills development and enhancement, a new version of our Lifelong Learning course recommendation system is proposed. The recommender system is based on ontology, which allows modelling the data of knowledge areas and job performance sectors to represent professional skills of users obtained from social networks. Machine learning techniques are applied to group entities in the ontology and make predictions of new data. The recommender system has a semantic core, content-based filtering, and heuristics to perform the formative suggestion. In order to validate the data model and test the recommender system, information was obtained from web-based lifelong learning courses and information was collected from LinkedIn professional profiles, incorporating the skills endorsements into the user profile. All possible settings of the system were tested. The best result was obtained in the setting based on the spatial clustering algorithm based on the density of noisy applications. An accuracy of 94% and 80% recall was obtained. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics11081190 |