Loading…

Microstructure and magnetic properties evolution of Al/CoCrFeNi nanocrystalline high-entropy alloy composite

A systematic microstructure-oriented magnetic property investigation for Al/CoCrFeNi nanocrystalline high-entropy alloys composite (nc-HEAC) is presented. In the initial state, the Al/CoCrFeNi nc-HEAC is composed of face-centered cubic (FCC)-Al, FCC-CoCrFeNi and hexagonal close-packed (HCP)-CoNi pha...

Full description

Saved in:
Bibliographic Details
Published in:Rare metals 2022-06, Vol.41 (6), p.2038-2046
Main Authors: Wang, Jun-Jie, Kou, Zong-De, Fu, Shu, Wu, Shang-Shu, Liu, Si-Nan, Yan, Meng-Yang, Wang, Di, Lan, Si, Hahn, Horst, Feng, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A systematic microstructure-oriented magnetic property investigation for Al/CoCrFeNi nanocrystalline high-entropy alloys composite (nc-HEAC) is presented. In the initial state, the Al/CoCrFeNi nc-HEAC is composed of face-centered cubic (FCC)-Al, FCC-CoCrFeNi and hexagonal close-packed (HCP)-CoNi phases. High energy synchrotron radiation X-ray diffraction and high-resolution transmission electron microscopy were used to reveal the relationship between microstructure evolution and magnetic mechanism of Al/CoCrFeNi nc-HEAC during heat treatment. At low-temperature annealing stage, the magnetic properties are mainly contributed by the HCP-CoNi phase. With the increase of temperature, the diffusion-induced phase transition process including the transformation of AlCoCrFeNi HEA from FCC to BCC structure and the growth of B2 phase plays a dominant role in the magnetic properties. It was found that the magnetic properties can be effectively regulated through the control of the thermal diffusion process. The nano dual-phase thermal diffusion-induced phase transition behavior of nanocomposites prepared based on laser-IGC technology provides guidance for the diffusion process and microstructure evolution of two phases in composites. Graphical abstract
ISSN:1001-0521
1867-7185
DOI:10.1007/s12598-021-01931-w