Loading…

Beyond the Prototype: Divide-and-conquer Proxies for Few-shot Segmentation

Few-shot segmentation, which aims to segment unseen-class objects given only a handful of densely labeled samples, has received widespread attention from the community. Existing approaches typically follow the prototype learning paradigm to perform meta-inference, which fails to fully exploit the un...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-05
Main Authors: Lang, Chunbo, Tu, Binfei, Gong, Cheng, Han, Junwei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Few-shot segmentation, which aims to segment unseen-class objects given only a handful of densely labeled samples, has received widespread attention from the community. Existing approaches typically follow the prototype learning paradigm to perform meta-inference, which fails to fully exploit the underlying information from support image-mask pairs, resulting in various segmentation failures, e.g., incomplete objects, ambiguous boundaries, and distractor activation. To this end, we propose a simple yet versatile framework in the spirit of divide-and-conquer. Specifically, a novel self-reasoning scheme is first implemented on the annotated support image, and then the coarse segmentation mask is divided into multiple regions with different properties. Leveraging effective masked average pooling operations, a series of support-induced proxies are thus derived, each playing a specific role in conquering the above challenges. Moreover, we devise a unique parallel decoder structure that integrates proxies with similar attributes to boost the discrimination power. Our proposed approach, named divide-and-conquer proxies (DCP), allows for the development of appropriate and reliable information as a guide at the "episode" level, not just about the object cues themselves. Extensive experiments on PASCAL-5i and COCO-20i demonstrate the superiority of DCP over conventional prototype-based approaches (up to 5~10% on average), which also establishes a new state-of-the-art. Code is available at github.com/chunbolang/DCP.
ISSN:2331-8422