Loading…

An Integrated Imbalanced Learning and Deep Neural Network Model for Insider Threat Detection

The insider threat is a vital security problem concern in both the private and public sectors. A lot of approaches available for detecting and mitigating insider threats. However, the implementation of an effective system for insider threats detection is still a challenging task. In previous work, t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced computer science & applications 2021, Vol.12 (1)
Main Authors: Al-Mhiqani, Mohammed Nasser, Ahmed, Rabiah, Zainal, Z, Isnin, S.N
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The insider threat is a vital security problem concern in both the private and public sectors. A lot of approaches available for detecting and mitigating insider threats. However, the implementation of an effective system for insider threats detection is still a challenging task. In previous work, the Machine Learning (ML) technique was proposed in the insider threats detection domain since it has a promising solution for a better detection mechanism. Nonetheless, the (ML) techniques could be biased and less accurate when the dataset used is hugely imbalanced. Therefore, in this article, an integrated insider threat detection is named (AD-DNN), which is an integration of adaptive synthetic technique (ADASYN) sampling approach and deep neural network technique (DNN). In the proposed model (AD-DNN), the adaptive synthetic (ADASYN) is used to solve the imbalanced data issue and the deep neural network (DNN) for insider threat detection. The proposed model uses the CERT dataset for the evaluation process. The experimental results show that the proposed integrated model improves the overall detection performance of insider threats. A significant impact on the accuracy performance brings a better solution in the proposed model compared with the current insider threats detection system.
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2021.0120166