Loading…

On the depth of binomial edge ideals of graphs

Let G be a graph on the vertex set [ n ] and J G the associated binomial edge ideal in the polynomial ring S = K [ x 1 , … , x n , y 1 , … , y n ] . In this paper, we investigate the depth of binomial edge ideals. More precisely, we first establish a combinatorial lower bound for the depth of S / J...

Full description

Saved in:
Bibliographic Details
Published in:Journal of algebraic combinatorics 2022-05, Vol.55 (3), p.827-846
Main Authors: Rouzbahani Malayeri, M., Saeedi Madani, S., Kiani, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let G be a graph on the vertex set [ n ] and J G the associated binomial edge ideal in the polynomial ring S = K [ x 1 , … , x n , y 1 , … , y n ] . In this paper, we investigate the depth of binomial edge ideals. More precisely, we first establish a combinatorial lower bound for the depth of S / J G based on some graphical invariants of G . Next, we combinatorially characterize all binomial edge ideals J G with depth S / J G = 5 . To achieve this goal, we associate a new poset M G with the binomial edge ideal of G and then elaborate some topological properties of certain subposets of M G in order to compute some local cohomology modules of S / J G .
ISSN:0925-9899
1572-9192
DOI:10.1007/s10801-021-01072-4