Loading…

On a generalized volume-filling chemotaxis system with nonlinear signal production

This paper deals with a generalized volume-filling chemotaxis system with nonlinear signal production u t = ∇ · ( φ ( u ) ∇ u ) - ∇ · ( ψ ( u ) ∇ v ) , ( x , t ) ∈ Ω × ( 0 , ∞ ) , 0 = Δ v - μ ( t ) + f ( u ) , ( x , t ) ∈ Ω × ( 0 , ∞ ) , under homogeneous Neumann boundary conditions in a smooth boun...

Full description

Saved in:
Bibliographic Details
Published in:Monatshefte für Mathematik 2022, Vol.198 (1), p.211-231
Main Author: Zheng, Pan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper deals with a generalized volume-filling chemotaxis system with nonlinear signal production u t = ∇ · ( φ ( u ) ∇ u ) - ∇ · ( ψ ( u ) ∇ v ) , ( x , t ) ∈ Ω × ( 0 , ∞ ) , 0 = Δ v - μ ( t ) + f ( u ) , ( x , t ) ∈ Ω × ( 0 , ∞ ) , under homogeneous Neumann boundary conditions in a smooth bounded domain Ω ⊂ R n , n ≥ 1 , where μ ( t ) = 1 | Ω | ∫ Ω f ( u ( x , t ) ) d x , φ ( u ) is a nonlinear diffusion, ψ ( u ) is a nonlinear sensitivity and f ( u ) is a nonlinear signal production function. Under suitable assumptions on the functions φ , ψ and f , the global existence and finite-time blow-up of solutions for the above system are studied. The results partially generalize some recent ones obtained in Winkler (Nonlinearity 31:2031–2056, 2018), Li (J Math Anal Appl 480:123376, 2019).
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-022-01669-2