Loading…
Deep Reinforcement Learning for Humanoid Robot Behaviors
RoboCup 3D Soccer Simulation is a robot soccer competition based on a high-fidelity simulator with autonomous humanoid agents, making it an interesting testbed for robotics and artificial intelligence. Due to the recent success of Deep Reinforcement Learning (DRL) in continuous control tasks, many t...
Saved in:
Published in: | Journal of intelligent & robotic systems 2022-05, Vol.105 (1), Article 12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | RoboCup 3D Soccer Simulation is a robot soccer competition based on a high-fidelity simulator with autonomous humanoid agents, making it an interesting testbed for robotics and artificial intelligence. Due to the recent success of Deep Reinforcement Learning (DRL) in continuous control tasks, many teams have been using this technique to develop motions in Soccer 3D. This article focuses on learning humanoid robot behaviors: completing a racing track as fast as possible and dribbling against a single opponent. Our approach uses a hierarchical controller where a model-free policy learns to interact model-based walking algorithm. Then, we use DRL algorithms for an agent to learn how to perform these behaviors. Finally, the learned dribble policy was evaluated in the Soccer 3D environment. Simulated experiments show that the DRL agent wins against the hand-coded behavior used by the ITAndroids robotics team in 68.2% of dribble attempts. |
---|---|
ISSN: | 0921-0296 1573-0409 |
DOI: | 10.1007/s10846-022-01619-y |