Loading…
GRADED TWISTED CALABI–YAU ALGEBRAS ARE GENERALIZED ARTIN–SCHELTER REGULAR
This is a general study of twisted Calabi–Yau algebras that are $\mathbb {N}$ -graded and locally finite-dimensional, with the following major results. We prove that a locally finite graded algebra is twisted Calabi–Yau if and only if it is separable modulo its graded radical and satisfies one of se...
Saved in:
Published in: | Nagoya mathematical journal 2022-03, Vol.245, p.100-153 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This is a general study of twisted Calabi–Yau algebras that are
$\mathbb {N}$
-graded and locally finite-dimensional, with the following major results. We prove that a locally finite graded algebra is twisted Calabi–Yau if and only if it is separable modulo its graded radical and satisfies one of several suitable generalizations of the Artin–Schelter regularity property, adapted from the work of Martinez-Villa as well as Minamoto and Mori. We characterize twisted Calabi–Yau algebras of dimension 0 as separable k-algebras, and we similarly characterize graded twisted Calabi–Yau algebras of dimension 1 as tensor algebras of certain invertible bimodules over separable algebras. Finally, we prove that a graded twisted Calabi–Yau algebra of dimension 2 is noetherian if and only if it has finite GK dimension. |
---|---|
ISSN: | 0027-7630 2152-6842 |
DOI: | 10.1017/nmj.2020.32 |