Loading…
On Some Modules Supported in the Chow Variety
The study of Chow varieties of decomposable forms lies at the confluence of algebraic geometry, commutative algebra, representation theory and combinatorics. There are many open questions about homological properties of Chow varieties and interesting classes of modules supported on them. The goal of...
Saved in:
Published in: | Vietnam journal of mathematics 2022-04, Vol.50 (2), p.501-521 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The study of Chow varieties of decomposable forms lies at the confluence of algebraic geometry, commutative algebra, representation theory and combinatorics. There are many open questions about homological properties of Chow varieties and interesting classes of modules supported on them. The goal of this note is to survey some fundamental constructions and properties of these objects, and to propose some new directions of research. Our main focus will be on the study of certain maximal Cohen–Macaulay modules of covariants supported on Chow varieties, and on defining equations and syzygies. We also explain how to assemble Tor groups over Veronese subalgebras into modules over a Chow variety, leading to a result on the polynomial growth of these groups. |
---|---|
ISSN: | 2305-221X 2305-2228 |
DOI: | 10.1007/s10013-021-00527-2 |