Loading…
Enhancement of SSVEPs Classification in BCI-Based Wearable Instrumentation Through Machine Learning Techniques
This work addresses the adoption of Machine Learning classifiers and Convolutional Neural Networks to improve the performance of highly wearable, single-channel instrumentation for Brain-Computer Interfaces. The proposed measurement system is based on the classification of Steady- State Visually Evo...
Saved in:
Published in: | IEEE sensors journal 2022-05, Vol.22 (9), p.9087-9094 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c223t-d1b024a60378843c0f7d6a556a481010b46c099a0f04ca2f5b30d6de95f1b1083 |
---|---|
cites | cdi_FETCH-LOGICAL-c223t-d1b024a60378843c0f7d6a556a481010b46c099a0f04ca2f5b30d6de95f1b1083 |
container_end_page | 9094 |
container_issue | 9 |
container_start_page | 9087 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Apicella, Andrea Arpaia, Pasquale De Benedetto, Egidio Donato, Nicola Duraccio, Luigi Giugliano, Salvatore Prevete, Roberto |
description | This work addresses the adoption of Machine Learning classifiers and Convolutional Neural Networks to improve the performance of highly wearable, single-channel instrumentation for Brain-Computer Interfaces. The proposed measurement system is based on the classification of Steady- State Visually Evoked Potentials (SSVEPs). In particular, Head-Mounted Displays for Augmented Reality are used to generate and display the flickering stimuli for the SSVEPs elicitation. Four experiments were conducted by employing, in turn, a different Head-Mounted Display. For each experiment, two different algorithms were applied and compared with the state-of-the-art-techniques. Furthermore, the impact of different Augmented Reality technologies in the elicitation and classification of SSVEPs was also explored. The experimental metrological characterization demonstrates (i) that the proposed Machine Learning-based processing strategies providea significantenhancement of theSSVEPclassification accuracy with respect to the state of the art, and (ii) that choosing an adequate Head-Mounted Display is crucial to obtain acceptable performance. Finally, it is also shown that the adoption of inter-subjective validation strategies such as the Leave-One-Subject-Out Cross Validation successfully leads to an increase in the inter-individual 1- \sigma reproducibility: this, in turn, anticipates an easier development of ready-to-use systems. |
doi_str_mv | 10.1109/JSEN.2022.3161743 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2659346995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9750042</ieee_id><sourcerecordid>2659346995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-d1b024a60378843c0f7d6a556a481010b46c099a0f04ca2f5b30d6de95f1b1083</originalsourceid><addsrcrecordid>eNo9kMlOwzAURSMEEqXwAYiNJdYpz1OGJY0CFJVBahl2kePYjavWKXay4O9JlIrVu4tz35VOEFxjmGEM6d3zKn-dESBkRnGEY0ZPggnmPAn7nJwOmULIaPx9Hlx4vwXAaczjSWBzWwsr1V7ZFjUarVaf-btH2U54b7SRojWNRcaiebYI58KrCn0p4US5U2hhfeu6oTlS69o13aZGL0LWxiq07EFr7Aatlayt-emUvwzOtNh5dXW80-DjIV9nT-Hy7XGR3S9DSQhtwwqXQJiIgMZJwqgEHVeR4DwSLMGAoWSRhDQVoIFJQTQvKVRRpVKucYkhodPgdvx7cM2w2xbbpnO2nyxIxFPKojTlPYVHSrrGe6d0cXBmL9xvgaEYtBaD1mLQWhy19p2bsWOUUv98LxOAEfoHgBpzdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659346995</pqid></control><display><type>article</type><title>Enhancement of SSVEPs Classification in BCI-Based Wearable Instrumentation Through Machine Learning Techniques</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Apicella, Andrea ; Arpaia, Pasquale ; De Benedetto, Egidio ; Donato, Nicola ; Duraccio, Luigi ; Giugliano, Salvatore ; Prevete, Roberto</creator><creatorcontrib>Apicella, Andrea ; Arpaia, Pasquale ; De Benedetto, Egidio ; Donato, Nicola ; Duraccio, Luigi ; Giugliano, Salvatore ; Prevete, Roberto</creatorcontrib><description>This work addresses the adoption of Machine Learning classifiers and Convolutional Neural Networks to improve the performance of highly wearable, single-channel instrumentation for Brain-Computer Interfaces. The proposed measurement system is based on the classification of Steady- State Visually Evoked Potentials (SSVEPs). In particular, Head-Mounted Displays for Augmented Reality are used to generate and display the flickering stimuli for the SSVEPs elicitation. Four experiments were conducted by employing, in turn, a different Head-Mounted Display. For each experiment, two different algorithms were applied and compared with the state-of-the-art-techniques. Furthermore, the impact of different Augmented Reality technologies in the elicitation and classification of SSVEPs was also explored. The experimental metrological characterization demonstrates (i) that the proposed Machine Learning-based processing strategies providea significantenhancement of theSSVEPclassification accuracy with respect to the state of the art, and (ii) that choosing an adequate Head-Mounted Display is crucial to obtain acceptable performance. Finally, it is also shown that the adoption of inter-subjective validation strategies such as the Leave-One-Subject-Out Cross Validation successfully leads to an increase in the inter-individual 1-<inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> reproducibility: this, in turn, anticipates an easier development of ready-to-use systems.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3161743</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Augmented reality ; BCI ; brain-computer interface ; Classification ; Classification algorithms ; Convolutional neural networks ; EEG ; Electroencephalography ; Helmet mounted displays ; Human-computer interface ; industry 4.0 ; instrumentation ; Instruments ; Machine learning ; neural networks ; Performance enhancement ; real-time systems ; Sensors ; SSVEP ; Support vector machines ; wearable ; Wearable technology</subject><ispartof>IEEE sensors journal, 2022-05, Vol.22 (9), p.9087-9094</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-d1b024a60378843c0f7d6a556a481010b46c099a0f04ca2f5b30d6de95f1b1083</citedby><cites>FETCH-LOGICAL-c223t-d1b024a60378843c0f7d6a556a481010b46c099a0f04ca2f5b30d6de95f1b1083</cites><orcidid>0000-0002-1791-6416 ; 0000-0002-5192-5922 ; 0000-0002-2792-2131 ; 0000-0002-1356-5559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9750042$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Apicella, Andrea</creatorcontrib><creatorcontrib>Arpaia, Pasquale</creatorcontrib><creatorcontrib>De Benedetto, Egidio</creatorcontrib><creatorcontrib>Donato, Nicola</creatorcontrib><creatorcontrib>Duraccio, Luigi</creatorcontrib><creatorcontrib>Giugliano, Salvatore</creatorcontrib><creatorcontrib>Prevete, Roberto</creatorcontrib><title>Enhancement of SSVEPs Classification in BCI-Based Wearable Instrumentation Through Machine Learning Techniques</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This work addresses the adoption of Machine Learning classifiers and Convolutional Neural Networks to improve the performance of highly wearable, single-channel instrumentation for Brain-Computer Interfaces. The proposed measurement system is based on the classification of Steady- State Visually Evoked Potentials (SSVEPs). In particular, Head-Mounted Displays for Augmented Reality are used to generate and display the flickering stimuli for the SSVEPs elicitation. Four experiments were conducted by employing, in turn, a different Head-Mounted Display. For each experiment, two different algorithms were applied and compared with the state-of-the-art-techniques. Furthermore, the impact of different Augmented Reality technologies in the elicitation and classification of SSVEPs was also explored. The experimental metrological characterization demonstrates (i) that the proposed Machine Learning-based processing strategies providea significantenhancement of theSSVEPclassification accuracy with respect to the state of the art, and (ii) that choosing an adequate Head-Mounted Display is crucial to obtain acceptable performance. Finally, it is also shown that the adoption of inter-subjective validation strategies such as the Leave-One-Subject-Out Cross Validation successfully leads to an increase in the inter-individual 1-<inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> reproducibility: this, in turn, anticipates an easier development of ready-to-use systems.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Augmented reality</subject><subject>BCI</subject><subject>brain-computer interface</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Convolutional neural networks</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Helmet mounted displays</subject><subject>Human-computer interface</subject><subject>industry 4.0</subject><subject>instrumentation</subject><subject>Instruments</subject><subject>Machine learning</subject><subject>neural networks</subject><subject>Performance enhancement</subject><subject>real-time systems</subject><subject>Sensors</subject><subject>SSVEP</subject><subject>Support vector machines</subject><subject>wearable</subject><subject>Wearable technology</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMlOwzAURSMEEqXwAYiNJdYpz1OGJY0CFJVBahl2kePYjavWKXay4O9JlIrVu4tz35VOEFxjmGEM6d3zKn-dESBkRnGEY0ZPggnmPAn7nJwOmULIaPx9Hlx4vwXAaczjSWBzWwsr1V7ZFjUarVaf-btH2U54b7SRojWNRcaiebYI58KrCn0p4US5U2hhfeu6oTlS69o13aZGL0LWxiq07EFr7Aatlayt-emUvwzOtNh5dXW80-DjIV9nT-Hy7XGR3S9DSQhtwwqXQJiIgMZJwqgEHVeR4DwSLMGAoWSRhDQVoIFJQTQvKVRRpVKucYkhodPgdvx7cM2w2xbbpnO2nyxIxFPKojTlPYVHSrrGe6d0cXBmL9xvgaEYtBaD1mLQWhy19p2bsWOUUv98LxOAEfoHgBpzdA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Apicella, Andrea</creator><creator>Arpaia, Pasquale</creator><creator>De Benedetto, Egidio</creator><creator>Donato, Nicola</creator><creator>Duraccio, Luigi</creator><creator>Giugliano, Salvatore</creator><creator>Prevete, Roberto</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1791-6416</orcidid><orcidid>https://orcid.org/0000-0002-5192-5922</orcidid><orcidid>https://orcid.org/0000-0002-2792-2131</orcidid><orcidid>https://orcid.org/0000-0002-1356-5559</orcidid></search><sort><creationdate>20220501</creationdate><title>Enhancement of SSVEPs Classification in BCI-Based Wearable Instrumentation Through Machine Learning Techniques</title><author>Apicella, Andrea ; Arpaia, Pasquale ; De Benedetto, Egidio ; Donato, Nicola ; Duraccio, Luigi ; Giugliano, Salvatore ; Prevete, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-d1b024a60378843c0f7d6a556a481010b46c099a0f04ca2f5b30d6de95f1b1083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Augmented reality</topic><topic>BCI</topic><topic>brain-computer interface</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Convolutional neural networks</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Helmet mounted displays</topic><topic>Human-computer interface</topic><topic>industry 4.0</topic><topic>instrumentation</topic><topic>Instruments</topic><topic>Machine learning</topic><topic>neural networks</topic><topic>Performance enhancement</topic><topic>real-time systems</topic><topic>Sensors</topic><topic>SSVEP</topic><topic>Support vector machines</topic><topic>wearable</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apicella, Andrea</creatorcontrib><creatorcontrib>Arpaia, Pasquale</creatorcontrib><creatorcontrib>De Benedetto, Egidio</creatorcontrib><creatorcontrib>Donato, Nicola</creatorcontrib><creatorcontrib>Duraccio, Luigi</creatorcontrib><creatorcontrib>Giugliano, Salvatore</creatorcontrib><creatorcontrib>Prevete, Roberto</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apicella, Andrea</au><au>Arpaia, Pasquale</au><au>De Benedetto, Egidio</au><au>Donato, Nicola</au><au>Duraccio, Luigi</au><au>Giugliano, Salvatore</au><au>Prevete, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of SSVEPs Classification in BCI-Based Wearable Instrumentation Through Machine Learning Techniques</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>22</volume><issue>9</issue><spage>9087</spage><epage>9094</epage><pages>9087-9094</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This work addresses the adoption of Machine Learning classifiers and Convolutional Neural Networks to improve the performance of highly wearable, single-channel instrumentation for Brain-Computer Interfaces. The proposed measurement system is based on the classification of Steady- State Visually Evoked Potentials (SSVEPs). In particular, Head-Mounted Displays for Augmented Reality are used to generate and display the flickering stimuli for the SSVEPs elicitation. Four experiments were conducted by employing, in turn, a different Head-Mounted Display. For each experiment, two different algorithms were applied and compared with the state-of-the-art-techniques. Furthermore, the impact of different Augmented Reality technologies in the elicitation and classification of SSVEPs was also explored. The experimental metrological characterization demonstrates (i) that the proposed Machine Learning-based processing strategies providea significantenhancement of theSSVEPclassification accuracy with respect to the state of the art, and (ii) that choosing an adequate Head-Mounted Display is crucial to obtain acceptable performance. Finally, it is also shown that the adoption of inter-subjective validation strategies such as the Leave-One-Subject-Out Cross Validation successfully leads to an increase in the inter-individual 1-<inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> reproducibility: this, in turn, anticipates an easier development of ready-to-use systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3161743</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1791-6416</orcidid><orcidid>https://orcid.org/0000-0002-5192-5922</orcidid><orcidid>https://orcid.org/0000-0002-2792-2131</orcidid><orcidid>https://orcid.org/0000-0002-1356-5559</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-05, Vol.22 (9), p.9087-9094 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2659346995 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Artificial neural networks Augmented reality BCI brain-computer interface Classification Classification algorithms Convolutional neural networks EEG Electroencephalography Helmet mounted displays Human-computer interface industry 4.0 instrumentation Instruments Machine learning neural networks Performance enhancement real-time systems Sensors SSVEP Support vector machines wearable Wearable technology |
title | Enhancement of SSVEPs Classification in BCI-Based Wearable Instrumentation Through Machine Learning Techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20SSVEPs%20Classification%20in%20BCI-Based%20Wearable%20Instrumentation%20Through%20Machine%20Learning%20Techniques&rft.jtitle=IEEE%20sensors%20journal&rft.au=Apicella,%20Andrea&rft.date=2022-05-01&rft.volume=22&rft.issue=9&rft.spage=9087&rft.epage=9094&rft.pages=9087-9094&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3161743&rft_dat=%3Cproquest_ieee_%3E2659346995%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-d1b024a60378843c0f7d6a556a481010b46c099a0f04ca2f5b30d6de95f1b1083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2659346995&rft_id=info:pmid/&rft_ieee_id=9750042&rfr_iscdi=true |