Loading…

Enhancement of SSVEPs Classification in BCI-Based Wearable Instrumentation Through Machine Learning Techniques

This work addresses the adoption of Machine Learning classifiers and Convolutional Neural Networks to improve the performance of highly wearable, single-channel instrumentation for Brain-Computer Interfaces. The proposed measurement system is based on the classification of Steady- State Visually Evo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2022-05, Vol.22 (9), p.9087-9094
Main Authors: Apicella, Andrea, Arpaia, Pasquale, De Benedetto, Egidio, Donato, Nicola, Duraccio, Luigi, Giugliano, Salvatore, Prevete, Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c223t-d1b024a60378843c0f7d6a556a481010b46c099a0f04ca2f5b30d6de95f1b1083
cites cdi_FETCH-LOGICAL-c223t-d1b024a60378843c0f7d6a556a481010b46c099a0f04ca2f5b30d6de95f1b1083
container_end_page 9094
container_issue 9
container_start_page 9087
container_title IEEE sensors journal
container_volume 22
creator Apicella, Andrea
Arpaia, Pasquale
De Benedetto, Egidio
Donato, Nicola
Duraccio, Luigi
Giugliano, Salvatore
Prevete, Roberto
description This work addresses the adoption of Machine Learning classifiers and Convolutional Neural Networks to improve the performance of highly wearable, single-channel instrumentation for Brain-Computer Interfaces. The proposed measurement system is based on the classification of Steady- State Visually Evoked Potentials (SSVEPs). In particular, Head-Mounted Displays for Augmented Reality are used to generate and display the flickering stimuli for the SSVEPs elicitation. Four experiments were conducted by employing, in turn, a different Head-Mounted Display. For each experiment, two different algorithms were applied and compared with the state-of-the-art-techniques. Furthermore, the impact of different Augmented Reality technologies in the elicitation and classification of SSVEPs was also explored. The experimental metrological characterization demonstrates (i) that the proposed Machine Learning-based processing strategies providea significantenhancement of theSSVEPclassification accuracy with respect to the state of the art, and (ii) that choosing an adequate Head-Mounted Display is crucial to obtain acceptable performance. Finally, it is also shown that the adoption of inter-subjective validation strategies such as the Leave-One-Subject-Out Cross Validation successfully leads to an increase in the inter-individual 1- \sigma reproducibility: this, in turn, anticipates an easier development of ready-to-use systems.
doi_str_mv 10.1109/JSEN.2022.3161743
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2659346995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9750042</ieee_id><sourcerecordid>2659346995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-d1b024a60378843c0f7d6a556a481010b46c099a0f04ca2f5b30d6de95f1b1083</originalsourceid><addsrcrecordid>eNo9kMlOwzAURSMEEqXwAYiNJdYpz1OGJY0CFJVBahl2kePYjavWKXay4O9JlIrVu4tz35VOEFxjmGEM6d3zKn-dESBkRnGEY0ZPggnmPAn7nJwOmULIaPx9Hlx4vwXAaczjSWBzWwsr1V7ZFjUarVaf-btH2U54b7SRojWNRcaiebYI58KrCn0p4US5U2hhfeu6oTlS69o13aZGL0LWxiq07EFr7Aatlayt-emUvwzOtNh5dXW80-DjIV9nT-Hy7XGR3S9DSQhtwwqXQJiIgMZJwqgEHVeR4DwSLMGAoWSRhDQVoIFJQTQvKVRRpVKucYkhodPgdvx7cM2w2xbbpnO2nyxIxFPKojTlPYVHSrrGe6d0cXBmL9xvgaEYtBaD1mLQWhy19p2bsWOUUv98LxOAEfoHgBpzdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659346995</pqid></control><display><type>article</type><title>Enhancement of SSVEPs Classification in BCI-Based Wearable Instrumentation Through Machine Learning Techniques</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Apicella, Andrea ; Arpaia, Pasquale ; De Benedetto, Egidio ; Donato, Nicola ; Duraccio, Luigi ; Giugliano, Salvatore ; Prevete, Roberto</creator><creatorcontrib>Apicella, Andrea ; Arpaia, Pasquale ; De Benedetto, Egidio ; Donato, Nicola ; Duraccio, Luigi ; Giugliano, Salvatore ; Prevete, Roberto</creatorcontrib><description>This work addresses the adoption of Machine Learning classifiers and Convolutional Neural Networks to improve the performance of highly wearable, single-channel instrumentation for Brain-Computer Interfaces. The proposed measurement system is based on the classification of Steady- State Visually Evoked Potentials (SSVEPs). In particular, Head-Mounted Displays for Augmented Reality are used to generate and display the flickering stimuli for the SSVEPs elicitation. Four experiments were conducted by employing, in turn, a different Head-Mounted Display. For each experiment, two different algorithms were applied and compared with the state-of-the-art-techniques. Furthermore, the impact of different Augmented Reality technologies in the elicitation and classification of SSVEPs was also explored. The experimental metrological characterization demonstrates (i) that the proposed Machine Learning-based processing strategies providea significantenhancement of theSSVEPclassification accuracy with respect to the state of the art, and (ii) that choosing an adequate Head-Mounted Display is crucial to obtain acceptable performance. Finally, it is also shown that the adoption of inter-subjective validation strategies such as the Leave-One-Subject-Out Cross Validation successfully leads to an increase in the inter-individual 1-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\sigma &lt;/tex-math&gt;&lt;/inline-formula&gt; reproducibility: this, in turn, anticipates an easier development of ready-to-use systems.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3161743</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Augmented reality ; BCI ; brain-computer interface ; Classification ; Classification algorithms ; Convolutional neural networks ; EEG ; Electroencephalography ; Helmet mounted displays ; Human-computer interface ; industry 4.0 ; instrumentation ; Instruments ; Machine learning ; neural networks ; Performance enhancement ; real-time systems ; Sensors ; SSVEP ; Support vector machines ; wearable ; Wearable technology</subject><ispartof>IEEE sensors journal, 2022-05, Vol.22 (9), p.9087-9094</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-d1b024a60378843c0f7d6a556a481010b46c099a0f04ca2f5b30d6de95f1b1083</citedby><cites>FETCH-LOGICAL-c223t-d1b024a60378843c0f7d6a556a481010b46c099a0f04ca2f5b30d6de95f1b1083</cites><orcidid>0000-0002-1791-6416 ; 0000-0002-5192-5922 ; 0000-0002-2792-2131 ; 0000-0002-1356-5559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9750042$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Apicella, Andrea</creatorcontrib><creatorcontrib>Arpaia, Pasquale</creatorcontrib><creatorcontrib>De Benedetto, Egidio</creatorcontrib><creatorcontrib>Donato, Nicola</creatorcontrib><creatorcontrib>Duraccio, Luigi</creatorcontrib><creatorcontrib>Giugliano, Salvatore</creatorcontrib><creatorcontrib>Prevete, Roberto</creatorcontrib><title>Enhancement of SSVEPs Classification in BCI-Based Wearable Instrumentation Through Machine Learning Techniques</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This work addresses the adoption of Machine Learning classifiers and Convolutional Neural Networks to improve the performance of highly wearable, single-channel instrumentation for Brain-Computer Interfaces. The proposed measurement system is based on the classification of Steady- State Visually Evoked Potentials (SSVEPs). In particular, Head-Mounted Displays for Augmented Reality are used to generate and display the flickering stimuli for the SSVEPs elicitation. Four experiments were conducted by employing, in turn, a different Head-Mounted Display. For each experiment, two different algorithms were applied and compared with the state-of-the-art-techniques. Furthermore, the impact of different Augmented Reality technologies in the elicitation and classification of SSVEPs was also explored. The experimental metrological characterization demonstrates (i) that the proposed Machine Learning-based processing strategies providea significantenhancement of theSSVEPclassification accuracy with respect to the state of the art, and (ii) that choosing an adequate Head-Mounted Display is crucial to obtain acceptable performance. Finally, it is also shown that the adoption of inter-subjective validation strategies such as the Leave-One-Subject-Out Cross Validation successfully leads to an increase in the inter-individual 1-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\sigma &lt;/tex-math&gt;&lt;/inline-formula&gt; reproducibility: this, in turn, anticipates an easier development of ready-to-use systems.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Augmented reality</subject><subject>BCI</subject><subject>brain-computer interface</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Convolutional neural networks</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Helmet mounted displays</subject><subject>Human-computer interface</subject><subject>industry 4.0</subject><subject>instrumentation</subject><subject>Instruments</subject><subject>Machine learning</subject><subject>neural networks</subject><subject>Performance enhancement</subject><subject>real-time systems</subject><subject>Sensors</subject><subject>SSVEP</subject><subject>Support vector machines</subject><subject>wearable</subject><subject>Wearable technology</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMlOwzAURSMEEqXwAYiNJdYpz1OGJY0CFJVBahl2kePYjavWKXay4O9JlIrVu4tz35VOEFxjmGEM6d3zKn-dESBkRnGEY0ZPggnmPAn7nJwOmULIaPx9Hlx4vwXAaczjSWBzWwsr1V7ZFjUarVaf-btH2U54b7SRojWNRcaiebYI58KrCn0p4US5U2hhfeu6oTlS69o13aZGL0LWxiq07EFr7Aatlayt-emUvwzOtNh5dXW80-DjIV9nT-Hy7XGR3S9DSQhtwwqXQJiIgMZJwqgEHVeR4DwSLMGAoWSRhDQVoIFJQTQvKVRRpVKucYkhodPgdvx7cM2w2xbbpnO2nyxIxFPKojTlPYVHSrrGe6d0cXBmL9xvgaEYtBaD1mLQWhy19p2bsWOUUv98LxOAEfoHgBpzdA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Apicella, Andrea</creator><creator>Arpaia, Pasquale</creator><creator>De Benedetto, Egidio</creator><creator>Donato, Nicola</creator><creator>Duraccio, Luigi</creator><creator>Giugliano, Salvatore</creator><creator>Prevete, Roberto</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1791-6416</orcidid><orcidid>https://orcid.org/0000-0002-5192-5922</orcidid><orcidid>https://orcid.org/0000-0002-2792-2131</orcidid><orcidid>https://orcid.org/0000-0002-1356-5559</orcidid></search><sort><creationdate>20220501</creationdate><title>Enhancement of SSVEPs Classification in BCI-Based Wearable Instrumentation Through Machine Learning Techniques</title><author>Apicella, Andrea ; Arpaia, Pasquale ; De Benedetto, Egidio ; Donato, Nicola ; Duraccio, Luigi ; Giugliano, Salvatore ; Prevete, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-d1b024a60378843c0f7d6a556a481010b46c099a0f04ca2f5b30d6de95f1b1083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Augmented reality</topic><topic>BCI</topic><topic>brain-computer interface</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Convolutional neural networks</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Helmet mounted displays</topic><topic>Human-computer interface</topic><topic>industry 4.0</topic><topic>instrumentation</topic><topic>Instruments</topic><topic>Machine learning</topic><topic>neural networks</topic><topic>Performance enhancement</topic><topic>real-time systems</topic><topic>Sensors</topic><topic>SSVEP</topic><topic>Support vector machines</topic><topic>wearable</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apicella, Andrea</creatorcontrib><creatorcontrib>Arpaia, Pasquale</creatorcontrib><creatorcontrib>De Benedetto, Egidio</creatorcontrib><creatorcontrib>Donato, Nicola</creatorcontrib><creatorcontrib>Duraccio, Luigi</creatorcontrib><creatorcontrib>Giugliano, Salvatore</creatorcontrib><creatorcontrib>Prevete, Roberto</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apicella, Andrea</au><au>Arpaia, Pasquale</au><au>De Benedetto, Egidio</au><au>Donato, Nicola</au><au>Duraccio, Luigi</au><au>Giugliano, Salvatore</au><au>Prevete, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of SSVEPs Classification in BCI-Based Wearable Instrumentation Through Machine Learning Techniques</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>22</volume><issue>9</issue><spage>9087</spage><epage>9094</epage><pages>9087-9094</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This work addresses the adoption of Machine Learning classifiers and Convolutional Neural Networks to improve the performance of highly wearable, single-channel instrumentation for Brain-Computer Interfaces. The proposed measurement system is based on the classification of Steady- State Visually Evoked Potentials (SSVEPs). In particular, Head-Mounted Displays for Augmented Reality are used to generate and display the flickering stimuli for the SSVEPs elicitation. Four experiments were conducted by employing, in turn, a different Head-Mounted Display. For each experiment, two different algorithms were applied and compared with the state-of-the-art-techniques. Furthermore, the impact of different Augmented Reality technologies in the elicitation and classification of SSVEPs was also explored. The experimental metrological characterization demonstrates (i) that the proposed Machine Learning-based processing strategies providea significantenhancement of theSSVEPclassification accuracy with respect to the state of the art, and (ii) that choosing an adequate Head-Mounted Display is crucial to obtain acceptable performance. Finally, it is also shown that the adoption of inter-subjective validation strategies such as the Leave-One-Subject-Out Cross Validation successfully leads to an increase in the inter-individual 1-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\sigma &lt;/tex-math&gt;&lt;/inline-formula&gt; reproducibility: this, in turn, anticipates an easier development of ready-to-use systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3161743</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1791-6416</orcidid><orcidid>https://orcid.org/0000-0002-5192-5922</orcidid><orcidid>https://orcid.org/0000-0002-2792-2131</orcidid><orcidid>https://orcid.org/0000-0002-1356-5559</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-05, Vol.22 (9), p.9087-9094
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2659346995
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Artificial neural networks
Augmented reality
BCI
brain-computer interface
Classification
Classification algorithms
Convolutional neural networks
EEG
Electroencephalography
Helmet mounted displays
Human-computer interface
industry 4.0
instrumentation
Instruments
Machine learning
neural networks
Performance enhancement
real-time systems
Sensors
SSVEP
Support vector machines
wearable
Wearable technology
title Enhancement of SSVEPs Classification in BCI-Based Wearable Instrumentation Through Machine Learning Techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20SSVEPs%20Classification%20in%20BCI-Based%20Wearable%20Instrumentation%20Through%20Machine%20Learning%20Techniques&rft.jtitle=IEEE%20sensors%20journal&rft.au=Apicella,%20Andrea&rft.date=2022-05-01&rft.volume=22&rft.issue=9&rft.spage=9087&rft.epage=9094&rft.pages=9087-9094&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3161743&rft_dat=%3Cproquest_ieee_%3E2659346995%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-d1b024a60378843c0f7d6a556a481010b46c099a0f04ca2f5b30d6de95f1b1083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2659346995&rft_id=info:pmid/&rft_ieee_id=9750042&rfr_iscdi=true