Loading…
Impact of temperature and material variation on mechanical properties of parts fabricated with fused deposition modeling (FDM) additive manufacturing
Additive manufacturing (AM) can be deployed for space exploration purposes, such as fabricating different components of robots’ bodies. The produced AM parts should have desirable thermal and mechanical properties to withstand the extreme environmental conditions, including the severe temperature va...
Saved in:
Published in: | International journal of advanced manufacturing technology 2022-06, Vol.120 (7-8), p.4791-4801 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Additive manufacturing (AM) can be deployed for space exploration purposes, such as fabricating different components of robots’ bodies. The produced AM parts should have desirable thermal and mechanical properties to withstand the extreme environmental conditions, including the severe temperature variations on the moon or other planets, which cause changes in parts’ strengths and may fail their operation. Therefore, the correlation between operational temperature and mechanical properties of AM fabricated parts should be evaluated. In this study, three different types of polymers, including polylactic acid (PLA), polyethylene terephthalate glycol (PETG), and acrylonitrile butadiene styrene (ABS), were used in the fused deposition modeling (FDM) process to fabricate several parts. The mechanical properties of produced parts were then investigated at various temperatures to generate knowledge on the correlation between temperature and type of material. When varying the operational temperature during tensile tests, the material’s glass transition temperature was found influential in determining the kind of material failure. ABS showed the best mechanical properties among the materials used at all temperatures due to its highest glass transition temperatures. The statistical analysis results indicated the temperature as the significant factor on tensile strength while the type of material was not a significant factor. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-022-09043-0 |