Loading…
A generalized strong law of large numbers
Strong laws of large numbers have been stated in the literature for measurable functions taking on values on different spaces. In this paper, a strong law of large numbers which generalizes some previous ones (like those for real-valued random variables and compact random sets) is established. This...
Saved in:
Published in: | Probability theory and related fields 1999-06, Vol.114 (3), p.401-417 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Strong laws of large numbers have been stated in the literature for measurable functions taking on values on different spaces. In this paper, a strong law of large numbers which generalizes some previous ones (like those for real-valued random variables and compact random sets) is established. This law is an example of a strong law of large numbers for Borel measurable nonseparably valued elements of a metric space. |
---|---|
ISSN: | 0178-8051 1432-2064 |
DOI: | 10.1007/s004400050229 |