Loading…
The uncertainty of fluxes
In the ordinary quantum Maxwell theory of a free electromagnetic field, formulated on a curved 3-manifold, we observe that magnetic and electric fluxes cannot be simultaneously measured. This uncertainty principle reflects torsion: fluxes modulo torsion can be simultaneously measured. We also develo...
Saved in:
Published in: | Communications in mathematical physics 2007-04, Vol.271 (1), p.247-274 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the ordinary quantum Maxwell theory of a free electromagnetic field, formulated on a curved 3-manifold, we observe that magnetic and electric fluxes cannot be simultaneously measured. This uncertainty principle reflects torsion: fluxes modulo torsion can be simultaneously measured. We also develop the Hamilton theory of self-dual fields, noting that they are quantized by Pontrjagin self-dual cohomology theories and that the quantum Hilbert space is -graded, so typically contains both bosonic and fermionic states. Significantly, these ideas apply to the Ramond-Ramond field in string theory, showing that its K-theory class cannot be measured. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-006-0181-3 |