Loading…

The uncertainty of fluxes

In the ordinary quantum Maxwell theory of a free electromagnetic field, formulated on a curved 3-manifold, we observe that magnetic and electric fluxes cannot be simultaneously measured. This uncertainty principle reflects torsion: fluxes modulo torsion can be simultaneously measured. We also develo...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2007-04, Vol.271 (1), p.247-274
Main Authors: FREED, Daniel S, MOORE, Gregory W, SEGAL, Graeme
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the ordinary quantum Maxwell theory of a free electromagnetic field, formulated on a curved 3-manifold, we observe that magnetic and electric fluxes cannot be simultaneously measured. This uncertainty principle reflects torsion: fluxes modulo torsion can be simultaneously measured. We also develop the Hamilton theory of self-dual fields, noting that they are quantized by Pontrjagin self-dual cohomology theories and that the quantum Hilbert space is -graded, so typically contains both bosonic and fermionic states. Significantly, these ideas apply to the Ramond-Ramond field in string theory, showing that its K-theory class cannot be measured.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-006-0181-3