Loading…

Construction of perfect crystals conjecturally corresponding to kirillov-reshetikhin modules over twisted quantum affine algebras

Assuming the existence of the perfect crystal bases of Kirillov-Reshetikhin modules over simply-laced quantum affine algebras, we construct certain perfect crystals for twisted quantum affine algebras, and also provide compelling evidence that the constructed crystals are isomorphic to the conjectur...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2006-05, Vol.263 (3), p.749-787
Main Authors: NAITO, Satoshi, SAGAKI, Daisuke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Assuming the existence of the perfect crystal bases of Kirillov-Reshetikhin modules over simply-laced quantum affine algebras, we construct certain perfect crystals for twisted quantum affine algebras, and also provide compelling evidence that the constructed crystals are isomorphic to the conjectural crystal bases of Kirillov-Reshetikhin modules over twisted quantum affine algebras.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-005-1515-2