Loading…

Automated Registration of Multiangle SAR Images Using Artificial Intelligence

Traditionally, nonlinear data processing has been approached via the use of polynomial filters, which are straightforward expansions of many linear methods, or through the use of neural network techniques. In contrast to linear approaches, which often provide algorithms that are simple to apply, non...

Full description

Saved in:
Bibliographic Details
Published in:Mobile information systems 2022-05, Vol.2022, p.1-10
Main Authors: Chopra, Pooja, Gollamandala, Vijay Suresh, Ahmed, Ahmed Najat, Babu, S. B. G. Tilak, Kaur, Chamandeep, Achyutha Prasad, N., Nuagah, Stephen Jeswinde
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Traditionally, nonlinear data processing has been approached via the use of polynomial filters, which are straightforward expansions of many linear methods, or through the use of neural network techniques. In contrast to linear approaches, which often provide algorithms that are simple to apply, nonlinear learning machines such as neural networks demand more computing and are more likely to have nonlinear optimization difficulties, which are more difficult to solve. Kernel methods, a recently developed technology, are strong machine learning approaches that have a less complicated architecture and give a straightforward way to transforming nonlinear optimization issues into convex optimization problems. Typical analytical tasks in kernel-based learning include classification, regression, and clustering, all of which are compromised. For image processing applications, a semisupervised deep learning approach, which is driven by a little amount of labeled data and a large amount of unlabeled data, has shown excellent performance in recent years. For their part, today’s semisupervised learning methods operate on the assumption that both labeled and unlabeled information are distributed in a similar manner, and their performance is mostly impacted by the fact that the two data sets are in a similar state of distribution as well. When there is out-of-class data in unlabeled data, the system’s performance will be adversely affected. When used in real-world applications, the capacity to verify that unlabeled data does not include data that belongs to a different category is difficult to obtain, and this is especially true in the field of synthetic aperture radar image identification (SAR). Using threshold filtering, this work addresses the problem of unlabeled input, including out-of-class data, having a detrimental influence on the performance of the model when it is utilized to train the model in a semisupervised learning environment. When the model is being trained, unlabeled data that does not belong to a category is filtered out by the model using two different sets of data that the model selects in order to optimize its performance. A series of experiments was carried out on the MSTAR data set, and the superiority of our method was shown when it was compared against a large number of current semisupervised classification algorithms of the highest level of sophistication. This was especially true when the unlabeled data had a significant proportion of data th
ISSN:1574-017X
1875-905X
DOI:10.1155/2022/4545139