Loading…

The effects of freezing on membrane electric potential in winter oilseed rape leaves

Extracellular ice formation in winter oilseed rape leaf discs (Brassica napus L. var. oleifera L. cv. Jantar) at different temperatures resulted in a transient membrane depolarization, which was followed by a decrease in membrane electric potential. In discs which underwent supercooling (no extracel...

Full description

Saved in:
Bibliographic Details
Published in:Acta physiologiae plantarum 2000-01, Vol.22 (1), Article 69
Main Authors: Piotrowska, Grażyna, Filek, Maria, Kacperska, Alina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extracellular ice formation in winter oilseed rape leaf discs (Brassica napus L. var. oleifera L. cv. Jantar) at different temperatures resulted in a transient membrane depolarization, which was followed by a decrease in membrane electric potential. In discs which underwent supercooling (no extracellular ice was formed), no membrane depolarization was observed. The inhibitors of calcium ion channels, gadolinium and lanthanum, decreased to some extend the amplitude of the frost-induced (−6 °C) depolarization and completely eliminated the decrease in membrane potential. Changes in membrane potential were associated with the increased electrolyte efflux, measured after thawing of the discs. No efflux from supercooled discs was observed. Application of calcium channel blockers decreased the level of the efflux induced by freezing at −6°C. It is suggested that membrane depolarization is one of the primary events induced by ice formation at a leaf surface. The possible reasons for changes in the membrane electric potential and their physiological consequences are discussed.
ISSN:0137-5881
1861-1664
DOI:10.1007/s11738-000-0010-9