Loading…

A note on the acyclicity of the Koszul complex of a module

We prove the vanishing of the Koszul homology group Hμ(Kos(M)μ), where μ is the minimal number of generators of M. We give a counterexample that the Koszul complex of a module is not always acyclic and show its relationship with the homology of commutative rings.

Saved in:
Bibliographic Details
Published in:Arkiv för matematik 2007-10, Vol.45 (2), p.273-278
Main Authors: Giral, José M., Planas-Vilanova, Francesc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove the vanishing of the Koszul homology group Hμ(Kos(M)μ), where μ is the minimal number of generators of M. We give a counterexample that the Koszul complex of a module is not always acyclic and show its relationship with the homology of commutative rings.
ISSN:0004-2080
1871-2487
DOI:10.1007/s11512-007-0043-z