Loading…
On mod p properties of Siegel modular forms
We prove two results on mod p properties of Siegel modular forms. First, we use theta series in order to construct of a Siegel modular form of weight p−1 which is congruent to 1 mod p. Second, we define a theta operator on q-expansions and show that the algebra of Siegel modular forms mod p is stabl...
Saved in:
Published in: | Mathematische annalen 2007-06, Vol.338 (2), p.421-433 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove two results on mod p properties of Siegel modular forms. First, we use theta series in order to construct of a Siegel modular form of weight p−1 which is congruent to 1 mod p. Second, we define a theta operator on q-expansions and show that the algebra of Siegel modular forms mod p is stable under , by exploiting the relation between and generalized Rankin-Cohen brackets. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-007-0081-7 |