Loading…

Local Hölder regularity for nonlocal parabolic \(p\)-Laplace equations

We prove local H\"older regularity for a nonlocal parabolic equations of the form \begin{align*} \partial_t u + \text{P.V.}\int_{\mathbb{R}^N} \frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+sp}}\,dy=0, \end{align*} for \(p\in (1,\infty)\) and \(s \in (0,1)\).

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-01
Main Authors: Adimurthi, Karthik, Prasad, Harsh, Tewary, Vivek
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove local H\"older regularity for a nonlocal parabolic equations of the form \begin{align*} \partial_t u + \text{P.V.}\int_{\mathbb{R}^N} \frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+sp}}\,dy=0, \end{align*} for \(p\in (1,\infty)\) and \(s \in (0,1)\).
ISSN:2331-8422