Loading…
Local Hölder regularity for nonlocal parabolic \(p\)-Laplace equations
We prove local H\"older regularity for a nonlocal parabolic equations of the form \begin{align*} \partial_t u + \text{P.V.}\int_{\mathbb{R}^N} \frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+sp}}\,dy=0, \end{align*} for \(p\in (1,\infty)\) and \(s \in (0,1)\).
Saved in:
Published in: | arXiv.org 2024-01 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove local H\"older regularity for a nonlocal parabolic equations of the form \begin{align*} \partial_t u + \text{P.V.}\int_{\mathbb{R}^N} \frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+sp}}\,dy=0, \end{align*} for \(p\in (1,\infty)\) and \(s \in (0,1)\). |
---|---|
ISSN: | 2331-8422 |